

Groundwater Data Utilities

Part C: Programs Written for Unstructured Grid
Models

Watermark Numerical Computing

August, 2020

Preface i

PREFACE

The utilities described herein were originally documented in Part B of the

Groundwater Data Utilities manual. However as their number increased, it was

decided to include them in a manual of their own. This manual can be regarded,

therefore, as an extension of Part B of the manual to the Groundwater Data Utility

suite. It follows the same protocols, and the file types referred to herein are described

in Part A of the manual.

Programs are discussed in alphabetical order. Most were written by me. However a

number were written by Mark Gallagher. Hopefully his contribution will increase in

the future.

The PLPROC utility, described in its own manual, comprises part of the software

toolkit that is being developed to expedite use of PEST in an unstructured grid

environment. It replaces many of the traditional Groundwater Data Utilities,

particularly those associated with pilot points. It can be downloaded from the PEST

web site.

While the writing of PLPROC, and of the utilities described herein, was prompted by

the release of MODFLOW-USG, their use is not restricted to MODFLOW-USG.

They can be used in conjunction with regularly-gridded MODFLOW models, and

with other models (structured or unstructured) such as MODFLOW6, TOUGH and

FEFLOW.

Note also that many of the utilities described in Part B of this manual are just as useful

in the unstructured grid context as in the structured grid context. These include:

• Programs that manipulate data contained in bore sample files.

• Utilities such as PESTPREP, PESTPREP1 and PESTPREP2 which automate

PEST input dataset preparation.

• Programs such as GENREG and PPCOV which assist in provision of

regularisation constraints to pilot point parameters.

I wish to gratefully acknowledge support that was provided to me for the writing of

some of the utilities documented herein. In particular, I would like to acknowledge the

following.

• The National Centre for Groundwater Research and Training, Flinders

University, Australia.

• The Queensland Hydrology Unit, Science Delivery Division, Department of

Science, Information Technology, Innovation and the Arts (DSITIA).

• Office of Groundwater Impact Assessment, Queensland Government

Department of Natural Resources and Mines.

• Australian Groundwater and Environmental Consultants, Brisbane, Australia.

Preface ii

Ongoing support from EMS-I is also gratefully acknowledged and appreciated.

John Doherty

Preface iii

UNSTRUCTURED GRID GROUNDWATER DATA UTILITIES

See Part B of the manual for the Groundwater Data Utilities for listing and

documentation of other members of the suite.

arr2ndtf Reads a list of numbers (i.e. an array) from a text file. After associating
these numbers with nodes of an unstructured grid, it re-writes them in node

data table format.

gridgen2gsf Writes an unstructured grid specification file based on a layer quadtree

grid produced by the USGS GRIDGEN program.

mf62vtk Reads a groundwater flow (GWF) binary model grid file generated

by MODFLOW6 and writes a VTK file for viewing of the grid and

(optionally) data associated with grid nodes.

mf62vtk1 Similar to MF62VTK; however it makes it easier to incorporate boundary

condition data into the VTK file which it writes.

mf6arrdet Lists the contents of a MODFLOW6 binary output file. This file can

contain values of a dependent variable (for example head) or cell-by-cell

flow terms.

mf6bin2tab_h Reads a binary dependent variable (e.g. head/drawdown) file generated by

MODFLOW6. Tabulates values of the dependent variable at all model

nodes at a user-specified simulation time.

mf6bud2smp Performs an identical role to USGBUD2SMP1. However instead of

reading a MODFLOW-USG binary budget output file, it reads a

MODFLOW6 binary budget output file.

mf6mod2obs Similar to USGMOD2OBS and USGMOD2OBS1, but is designed to work
with MODFLOW6. Reads a binary, dependent variable MODFLOW6

output file and interpolates to sites and times of observations.

mf6mod2smp Similar to MOD2SMP and USGMOD2SMP. Reads a binary, dependent-
variable file produced by MODFLOW6. The contents are interpolated to

the sites of bores. Results are recorded as a bore sample file.

pt2vtk Reads coordinates of points, and data pertaining to points, from a tabular

data file. Writes a VTK file for visualization of point data.

tab2ndtf Reads a tabular file containing data for at least some nodes of an
unstructured grid. Writes data in node data table format, so that it is

readable by USG2VTK.

usg2vtk Reads a MODFLOW-USG GWF grid or CLN network specification file
and writes a VTK file for viewing of the grid/network and (optionally) data

associated with grid/network nodes.

usg2vtk1 Similar to USG2VTK but represents unstructured cells using the more

flexible VTK POLYHEDRON scheme.

Preface iv

usgaddcoord Adds coordinates to a tabular data file in which nodes feature as the first

column.

usgaddzcoord Adds z coordinates to a tabular data file which includes x and y
coordinates. z coordinates are obtained through interpolation from a

MODFLOW-USG grid.

usgarrdet Lists the contents of a MODFLOW-USG head/drawdown or cell-by-cell

flow term binary output file.

usgarrdet_dbl Same as USGARRDET, but reads double precision binary files.

usgbin2csv_h Reads a binary head/drawdown file generated by MODFLOW-USG.

Tabulates heads for user-specified nodes or layers as a series of CSV files

that can be imported to PARAVIEW and prepared for animation.

usgbin2tab_h Reads a binary head/drawdown file generated by MODFLOW-USG.
Tabulates values of head or drawdown at all nodes at a user-specified

simulation time.

usgbin2tab_h1 Identical to USGBIN2TAB_H1 but adds a column containing node layer

numbers.

usgbud2smp Reads a binary cell-by-cell flow term file written by MODFLOW-USG.

Records flow rates in each of a number of user-specified zones in bore

sample file format.

usgbud2smp1 Performs similar function as usgbud2smp but obtains information on
which budget terms to extract from a MODFLOW-USG binary budget file

from a different type of text input file.

usgdbl2sgl Reads an unstructured grid binary head/drawdown or budget file written by

a double precision compiled version of MODFLOW-USG. Converts to

single precision.

usgdualmodel Reads unstructured grid specification files for a coarse and a fine model.

The two are assumed to be compatible, in that fine model cells “tile”
coarse model cells and do not overlap coarse model cell boundaries. Writes

a file containing node associations between the two models for use by

upscaling and downscaling software.

usggridlay Reads an unstructured grid specification file. Writes a MIF/MID file, BLN

file and XYZ file for a user-specified model layer.

usgmod2array Similar to MOD2ARRAY but works with MODFLOW-USG instead of

MODFLOW. Modifies a MODFLOW-USG input dataset so that user-

specified arrays are read from an external file.

usgmod2obs Undertakes spatial and temporal interpolation from a binary

head/drawdown file written by MODFLOW-USG to the locations and

times of observations.

Preface v

usgmod2obs1 Similar to USGMOD2OBS, but can read a binary file written in double

precision. Its method of identifying dry/inactive cells is also slightly

different.

usgmod2smp Undertakes spatial interpolation from a binary head/drawdown file written

by MODFLOW-USG to user-specified sites.

usgndtf2mif Reads an unstructured grid specification file and a node data table file

containing information on the nodes of an unstructured grid. Writes node

data in MIF/MID format, ready for import into a GIS.

usgorthchek Checks whether all model cells are square or rectangular.

usgprop2tab1 Reads a series of layer property arrays from a MODFLOW-USG input file.

Rewrites these in tabular format in nodal sequence.

usgprop2tab2 Reads a series of layer property arrays from a MODFLOW-USG input file.
Rewrites these in tabular format in nodal sequence. Allows more flexible

representation of array data in MODFLOW-USG input file than

USGPROP2TAB1.

usgptingrid Finds unstructured grid cells in which user-supplied points lie. An (x,y)

coordinate and layer number is associated with each point.

usgquadfac Calculates interpolation factors from a regular or quadtree-refined grid to a

set of observation wells for the use of USGMOD2OBS and

USGMOD2SMP.

ARR2NDTF 6

ARR2NDTF

Function of ARR2NDTF

ARR2NDTF (which stands for “ARRay to Node Data Table File) reads a list of

numbers from a text input file. These are read using the free format protocol, and so

can be arranged in a list or as sequential numbers on one or many wrapped lines. The

numbers can be real or integers. On the assumption that these numbers can be

assigned to sequential nodes of an unstructured grid (starting at an arbitrary node),

ARR2NDTF rewrites them in node data table file format. As such, they can be used

by programs such as USG2VTK for visualization and display purposes, of by

PLPROC for unstructured grid parameterization purposes.

Using ARR2NDTF

As for all other programs in the Groundwater Data Utilities suite, a response of “e” or

“E” (for “escape”) to any prompt takes the user back to the previous prompt.

ARR2NDTF commences execution by asking for the name of the file which it must

read, and then asking how many lines of this file must be ignored before encountering

the start of the list of numbers that must actually be read. The prompts are:

 Enter name of file containing data array:

 Skip how many lines at the top of this file?

ARR2NTDF next acquires information that allows it to place the numbers which it is

about to read into an array that pertains to a MODFLOW-USG or other model. It

asks:

 Enter starting node number in array:

 Enter final node number in array:

 Enter total number of nodes in grid:

It is the user’s responsibility to ensure the integrity of these numbers. The last is

important, because every node in the entire grid must feature in a node data table file,

even if many are associated with default numbers that imply missing data.

 Enter a label for this data (12 characters of less):

The label must be 15 characters or less in length and should contain no spaces. This

label will head the column of the node data table file which ARR2NDTF writes.

ARR2NDTF’s next question is:

 Does the array contain integer or real data? [i/r]:

If the starting node number is not 1 and the final node number is not equal to the

number of nodes in the grid, ARR2NDF needs to know how it should fill elements of

the nodal array that are missing from the list of numbers that it is about to read. So it

asks:

 Enter data value to assign to uncited nodes:

ARR2NDTF 7

ARR2NDTF’s final prompt is for the name of the node data table file which it must

write:

 Enter name for node data table file:

After acquiring this name, it reads its input file and writes its output file. If any errors

are encountered during this process it reports these to the screen and then ceases

execution.

Numbers read by ARR2NDTF from its input file must be separated from each other

by whitespace (including a new-line character) or commas. They are read using the

FORTRAN free-field protocol. Hence they can be arranged sequentially over one or

many lines, or in a single list with one number to a line. No characters other than

whitespace or a comma must separate them. Also, they must pertain to sequential

nodes of an unstructured grid.

Uses of ARR2NDTF

The format of a node data table file is described in Part A of this manual. It is read by

programs such as USG2VTK in order to associate an integer or real value with every

node of the grid. It can also be read by programs such as PLPROC (a parameter pre-

processor for unstructured grid models).

Specifications of a node data table file allow it to contain more than one column of

integer and/or real data. Different columns can contain data of different types.

ARR2NDTF writes a node data table file containing only two columns, the first being

node numbers and the second being the data read from its input file. Multi-column

node data table files can easily be created from ARR2NDTF-generated files through

column cutting and pasting, as is allowed by many text editors.

See Also

See also TAB2NDTF, USG2VTK, USGPROP2TAB1, USGPROP2TAB2,

USGBIN2TAB_H and USGBIN2TAB_H1.

GRIDGEN2GSF 8

GRIDGEN2GSF

Function of GRIDGEN2GSF

GRIDGEN2GSF facilitates three-dimensional visualization of a MODFLOW-USG

model whose grid is constructed through quadtree refinement of a traditional

structured grid MODFLOW model using the USGS GRIDGEN program. See Lien et

al (2014) for a description of the latter program.

GRIDGEN2GSF writes an unstructured grid specification file using two different

methodologies for definition of grid cell vertices. It also writes a node data table file

linking nodes within the quadtree-refined unstructured grid generated by GRIDGEN

to rows, columns and layers of the original MODFLOW grid. These files can be used

by programs such as USG2VTK and USGGRIDLAY for building VTK and SURFER

files through which the new quadtree-refined grid can be visualized and displayed.

Programs such as PLPROC can also use the grid specification file to assist in pilot

point parameterization of the quadtree-refined grid.

Using GRIDGEN2GSF

General

GRIDGEN2GSF reads a GRIDGEN-produced file (and files cited therein) which

contains specifications for a quadtree-refined grid. This file must contain a single

QUADTREE block and a single MODFLOW_GRID block, with the latter citing the

former through its MODFLOW_GRID keyword. These blocks can be provided in any

order. If other blocks appear in this file they are ignored.

Both of these blocks will probably cite other files using the OPEN/CLOSE protocol

associated with various keywords. These files provide data such as structured or

unstructured cell or node elevations. GRIDGEN2GSF reads these files too. Of

particular importance is the quadtree structure file cited with the QUADTREE_FILE

keyword of the QUADTREE block. This file relates quadtree-refined nodes to cells of

the original structured MODFLOW model.

As is discussed by Lien et al (2014), GRIDGEN allows specification of quadtree-

refined grid node top and bottom elevations in three different ways, namely through

the REPLICATE, INTERPOLATE and ASCIIGRID options associated with the TOP

LAYER and BOTTOM LAYER keywords of the QUADTREE_BUILDER block.

Elevations assigned by GRIDGEN to grid nodes using any of these options are stored

in files cited in the TOP LAYER and BOTTOM LAYER keywords of the

QUADTREE block. GRIDGEN2GSF reads these latter files. From the data contained

within these files it calculates the z coordinates of all unstructured grid nodes as the

average of the bottom and top elevations calculated for each pertinent cell. It then

records these node z coordinates in the second section of the unstructured grid

specification file which it writes.

GRIDGEN2GSF 9

The assignment of elevations to the vertices of unstructured cells is a little more

complicated than this however. Visualization of cells requires that the x, y, and z

coordinates of all cell vertices be provided; this indeed is an important component of

the unstructured grid specification file, vertex coordinates being listed in the first part

of this file. GRIDGEN2GSF calculates z coordinates for these vertices in one of two

user-specified ways.

If the first option is employed, vertex elevations are calculated through bilinear

interpolation from structured model cell top and bottom elevations provided in the

MODFLOW_GRID block. In writing the unstructured grid specification file,

GRIDGEN2GSF then links all cells which use a common vertex to that vertex. This

strategy is “parsimonious”, as it drastically reduces the number of vertices that must

be recorded in the unstructured grid specification file, as no vertex is recorded more

than once, regardless of the number of cells to which that vertex belongs. This, in

turn, induces USG2VTK to write a smaller VTK file, and allows visualization

software to display the grid with a smaller numerical burden.

If the second option for vertex z coordinate calculation is adopted, each cell in the

quadtree-refined unstructured grid is assumed to be a rectangular prism with a

horizontal top and bottom surface. The elevations of these surfaces are read from TOP

LAYER and BOTTOM LAYER data cited in the QUADTREE block. With adoption

of this protocol, vertex definition becomes “non-parsimonious”, in that each

unstructured model cell is assigned eight individual vertices, regardless of whether a

vertex is shared by a neighbouring cell. For large and complex grids, this can result in

the production of very large unstructured grid specification files by GRIDGEN2GSF,

very large VTK files by USG2VTK and slow display and manipulation of the

unstructured grid by three-dimensional visualization software.

GRIDGEN2GSF also writes a “node data table file”. As is described elsewhere in this

manual, this contains node data in tabular format. In the node data table file written by

GRIDGEN2GSF the first column contains node numbers, arranged in increasing

order. The second, third and fourth columns contain the column, row and layer

number of the original structured MODFLOW grid in which each cell of the quadtree-

refined grid lies.

Prompts and Responses

Typical GRIDGEN2GSF prompts and responses are as follows.

Program GRIDGEN2GSF writes an unstructured grid specification file based on

 a quadtree-refined grid generated using the USGS GRIDGEN program.

 Enter file containing MODFLOW_GRID and QUADTREE blocks: model.dfn

 Inactive threshold for layer top/bot elevs: (<Enter> if none): 999.0

 Name for vertex-parsimonious USG spec file (<Enter> if none): model1.spc

 Name for non-vertex-parimonious USG spec file (<Enter> if none): model2.spc

 Name for ICOL/IROW/ILAY node data table file (<Enter> if none): nodes.ndt

 - file SS18_2_L1top.DAT read ok.

 - file Layer1.DAT read ok.

 - file Layer2.DAT read ok.

 - file Layer3.DAT read ok.

 - file Layer4.DAT read ok.

 - file Layer5.DAT read ok.

GRIDGEN2GSF 10

 - file Layer6.DAT read ok.

 - file Layer7.DAT read ok.

 - file Layer8.DAT read ok.

 - file temp.dfn read ok.

 - reading structure file for first time...

 - maximum grid refinement level = 4

 - assigning coordinates to grid of maximum refinement...

 - reading structure file for second time...

 - file grid02qtg.tsf read ok

 - reading USG nodal top/bottom elevation arrays...

 - file grid02qtg.top1.dat read ok.

 - file grid02qtg.top2.dat read ok.

 - file grid02qtg.top3.dat read ok.

 - file grid02qtg.top4.dat read ok.

 - file grid02qtg.top5.dat read ok.

 - file grid02qtg.top6.dat read ok.

 - file grid02qtg.top7.dat read ok.
 - file grid02qtg.top8.dat read ok.

 - file grid02qtg.bot1.dat read ok.

 - file grid02qtg.bot2.dat read ok.

 - file grid02qtg.bot3.dat read ok.

 - file grid02qtg.bot4.dat read ok.

 - file grid02qtg.bot5.dat read ok.

 - file grid02qtg.bot6.dat read ok.

 - file grid02qtg.bot7.dat read ok.

 - file grid02qtg.bot8.dat read ok.

 - eliminating unused vertices...

 - writing parimonious USG spec file...

 - file model1.spc written ok.

 - writing non-parsimonious USG spec file...

 - file model2.spc written ok.

 - writing NCOL/NROW/NLAY node data table file...

 - file nodes.ndt written ok.

The following should be noted.

• If the original structured MODFLOW grid has inactive cells, and if top and

bottom elevations assigned to these cells are incorrect, then the number

supplied in response to the second of GRIDGEN2GSF’s prompt should allow

the user to identify such cells. Any cell in which the absolute value of the

bottom or top elevation is greater than the absolute value of the user-supplied

threshold is not used in interpolating structured MODFLOW cell top and

bottom elevations to the vertices of the quadtree-refined grid if the

parsimonious vertex option is employed. (As stated above, for the non-

parsimonious option, unstructured cell vertex elevations are equated to the cell

top and bottom elevations read from files cited in the QUADTREE block.) It

is the user’s responsibility to ensure that no active cells of the structured

MODFLOW model are assigned elevations that are above this threshold.

• Inactive nodes, and the vertices associated with them, are omitted from the

grid specification and node data table files written by GRIDGEN2GSF.

• The node numbering sequence recorded in the grid specification file written by

GRIDGEN2GSF is the same as that defined in the quadtree grid structure file

written by the GRIDGEN program.

GRIDGEN2GSF 11

• If the parsimonious vertex option is employed, then vertices in quadtree-

refined areas of the model grid may be calculated with reduced accuracy as

these are interpolated from original structured MODFLOW grid cell centres

rather than from node elevations that GRIDGEN may read if the ASCIIFILE

option is adopted for assignment of refined grid node elevations. Furthermore,

if a highly refined cell borders a larger, less refined cell, vertices for the

former are not decreed to be shared by the latter. This strategy allows all

refined cells to possess 8 vertices regardless of their refinement level, and of

the refinement level of their (possibly more refined) neighbours. (This is a

requirement of the USG2VTK program.) This may result in slight vertical

misalignment of differently-refined cell edges where layer topography is

variable.

Uses of GRIDGEN2GSF

GRIDGEN2GSF is used primarily to facilitate 3D visualization of quadtree-refined

grids constructed by the GRIDGEN program. However the unstructured grid

specification file produced by GRIDGEN2GSF can also be used by programs which

perform tasks other than visualization. One such program is the PLPROC parameter

list processor, which can be used for implementation of pilot points parameterization

in an unstructured grid model.

See Also

See also USG2VTK, USGGRIDLAY

References

Lien, J-M., Liu, G. and Langevin, C.D., 2014. GRIDGEN Version 1.0: A Computer

Program for Generating Unstructured Finite-Volume Grids. U.S. Geological Survey

Open-File Report 2014-1109.

MF62VTK 12

MF62VTK

Function of MF62VTK

MF62VTK reads a groundwater flow (GWF) binary model grid file generated by

MODFLOW6. This file contains sufficient information to afford pictorial

representation of a model grid. MF62VTK rewrites this information as a so-called

“legacy VTK” file. This file is readable by packages such as PARAVIEW, wherein

the model grid, as well as cell properties and model-calculated system states, can be

displayed.

The action of MF62VTK is very much like that of programs USG2VTK and

USG2VTK1, both of which are documented in this manual. Note, however, that while

MF62VTK can process data pertaining to MODFLOW6 DIS and DISV grids, it will

cease execution with an appropriate error message if asked to read a binary grid file

that pertains to a MODFLOW6 DISU grid. This is because, for a DISU grid, it cannot

be assumed that all model cells are prismatic.

Using MF62VTK

MF62VTK commences execution by prompting for the name of the MODFLOW6

binary grid file that it must read:

 Enter name of MODFLOW6 binary grid file:

This file is written by MODFLOW6. Its name is assigned automatically by

MODFLOW6 by adding “.grb” to the end of the name of its discretization input file.

Next MF62VTK prompts for the name of the VTK file that is must write:

 Enter name for VTK output file:

In similar fashion to USG2VTK and USG2VTK1, MF62VTK then asks whether it

should include any grid-pertinent data in this file. It asks:

 Record scalar data in VTK file? [y/n]:

And then, if the response to the above prompt is “y”:

Enter name of tabular file from which to read cell data:

The “tabular” file to which MF62VTK is directed must contains columns of data.

These can be real or integer. Each column must contain a header of 20 characters or

less in length; this name will be used to identify the dataset in the VTK file written by

MF62VTK. There must be one row of data for every cell in the MODFLOW6 grid;

the ordering of rows must be the same as that of MODFLOW6 cell indices.

It is important to note that data must be provided for all model cells, regardless of the

IDOMAIN value associated with each cell. However MF62VTK records data in its

VTK file only for those cells whose IDOMAIN value is nonzero. This reduces the

MF62VTK 13

length of the file, as well as the burden of displaying the active part of the grid, and its

properties, in a three-dimensional visualization package.

Once it has received the name of the tabular file from which it must read model-cell-

pertinent data, MF62VTK repeatedly prompts:

 Enter column number of data to read (<Enter> if no more):

 Is this integer or real data? [i/r]:

When the response to the first of these prompts is <Enter>, MF62VTK proceeds to

write the VTK file. Then it ceases execution.

Regardless of whether a tabular data file is read or not, MF62VTK records the

LAYER, IDOMAIN and CELLTYPE values of all model cells in the VTK file which

it writes (these are read from the MODFLOW-generated binary grid file). For a DIS

file it also records cell ROW and COLUMN numbers, while for a DISV file it records

cell ICPL (i.e. grid cell index) numbers.

Uses of MF62VTK

As is apparent from the above description, MF62VTK provides the means to visualize

a model grid, as well as grid cell properties and model-calculated system states. It is

the user’s responsibility to record these properties and states in tabular file format so

that they are readable by MF62VTK.

See Also

See also USG2VTK, USG2VTK1 and MF62VTK1.

MF62VTK1 14

MF62VTK1

Function of MF62VTK1

MF62VTK1 performs a similar role to that of MF62VTK. That is, it writes a “legacy

VTK file” which is easily imported into a visualization package such as PARAVIEW.

As for MF62VTK, model-cell-specific “scalar” data can be included in the VTK file.

MF62VTK1 is programmed to read MODFLOW6 package input files containing

tables of cell-based data to obtain the values of these scalars.

Using MF62VTK1

A user supplies information to MF62VTK1 by responding to a series of prompts. As

for all other programs of the Groundwater Data Utilities suite, a user can backtrack to

a previous prompt by responding to the current prompt with “e” followed by the

“enter” key. Backtracking is available for most MF62VTK1 prompts. However

backtracking is disabled for some of its prompts because of the excessive amount of

programmatic book-keeping which its implementation would require.

The first three questions that are asked by MF62VTK1 are the same as those that are

asked by MF62VTK. MF62VTK1 commences execution by asking for the name of

the MODFLOW6 binary grid file that it must read:

 Enter name of MODFLOW6 binary grid file:

This file is written by MODFLOW6. Its name is assigned automatically by

MODFLOW6 by adding “.grb” to the end of the name of the current model’s

discretization file.

Next MF62VTK1 prompts for the name of the VTK file that it must write. (It is wise

to provide an extension of “.vtk” for this file.)

 Enter name for VTK output file:

In similar fashion to MF62VTK, MF62VTK1 then asks whether it should include any

grid-pertinent data in this file. It asks:

 Record scalar data in VTK file? [y/n]:

If the response to this question is “n”, MF62VTK1 writes a VTK file in which all

active grid cells and accompanying vertices are represented. Some scalar datasets (i.e.

grid-cell specific datasets) are also recorded in this file. The nature of these datasets

depends on the type of grid that the MODFLOW6 model employs (i.e. DIS or DISV

grid); cell indices and layer numbers are among the scalars that are recorded.

If the response to the above prompt is “y”, MF62VTK1 asks:

 Enter model input file #1 (<Enter> if no more):

MF62VTK1 15

MF62VTK1 can obtain data from one or more files in which cell-based data are listed

in tables. These can include the input files for various MODFLOW6 packages.

Alternatively, they can be other types of file. Whatever the file type, it must contain a

table of cell-based data values. This table can be of any length; cells which are

omitted from the table are assigned user-specified default values. If the MODFLOW6

model employs a DIS grid, then cells in this table must be identified by their layer,

row and column numbers. These must be provided in successive columns of the table

(in this order). For a DISV grid, layer and grid cell index (i.e. icpl) cell identifiers

must be provided in subsequent columns of this table. MF62VTK1 is informed of the

first of this set of two (for DISV) or three (for DIS) columns by the user in response to

one of its prompts; see below.

If the response to the above prompt is the name of an appropriate file, MF62VTK1

opens that file. Next, it asks how to find the beginning and end of the table that it must

read from this file. It is assumed that the table is preceded by a text string, and that a

text string marks its end. For many MODFLOW6 input files, the appropriate text

strings are “BEGIN PERIOD” and “END PERIOD”. MF62VTK1’s prompts, together

with these responses, are exemplified below.

 Enter starting text for data table: begin period

 Enter finishing text for data table: end period

Note the following:

• The user-supplied text string can optionally be enclosed in quotes.

• MF62VTK1’s search for the user-specified text string is case-insensitive.

• The entire text does not need to be provided – only enough to identify it.

Hence “end” would have been a sufficient response to the second of the above

MF62VTK1 prompts. (However “begin” would not have sufficed for the first

of the above responses because other MODFLOW6 data blocks will probably

precede this table.)

• If the user-provided text strings bracket more than one table in the file that

MF62VTK1 reads, then MF62VTK1 will read only the first of these tables.

• If a cell is cited more than once in a table, table entries for that cell are added

if a table contains real numbers (see below); alternatively, the last entry

prevails if a table column contains integers.

• There is no reason why a user cannot add his/her own text strings to a

MODFLOW6 input file to uniquely identify a table. However these must not

follow a “#” symbol. MF62VTK1 adopts the MODFLOW6 convention of

ignoring any text following “#”.

After receiving the above information, MF62VTK1 locates the table in the file. It

scans the first line of this table to ascertain the number of columns that it contains. It

records its findings to the screen. Note that MF62VTK1 assumes that table entries are

separated by one or more spaces. It takes no notice of quotes. Hence if it finds an

entry such as “this entry” in the first line of the table, it interprets this as two columns.

MF62VTK1 16

There are some rare circumstances where this could cause confusion. Nevertheless,

confusion is unlikely as text (if present) normally occupies the final columns of a

MODFLOW6 input tabular dataset. Nevertheless, for this and many other reasons,

avoid spaces in text if possible.

MF62VTK1’s next question is:

 In what column do cellid's begin?

As has already been discussed, it is assumed that for a DIS grid, three columns of the

table are devoted to provision of the layer, row and column (in that order) indices of

each cell for which data is provided. For a DISV grid, it is assumed that two columns

of the table are devoted to provision of layer and icpl indices in that order. Often these

will be the leading columns of the table; if this is the case, the appropriate response to

the above prompt is “1”. However this is not always the case. Hence, to maintain

maximum flexibility of file-reading, MF62VTK1 checks the protocol pertaining to the

present file through the above question.

For each of the subsequent columns of the table, MF62VTK1 then asks the question

(with a question-specific column number as shown):

 Enter label for data in column #3 (<Enter> if ignore):

Provide a label whose length is 20 characters or less in length. This label will be

associated with this column’s data in the VTK file which is written by MF62VTK1

(and presumably in visualizations of the model that are enabled by this VTK file).

Alternatively, if you wish that the contents of the current column be ignored, simply

respond to the above prompt by pressing the <enter> key.

If you provide a data label, MF62VTK1 then asks:

 Is this integer or real data? [i/r]:

 Enter value for missing cells:

Respond as appropriate to these questions. Normally a table in a MODFLOW6 input

file will contain data for only a small subset of cells in the model grid. The value that

MF62VTK1 ascribes to the remainder of the cells will be determined by the user’s

response to the second of the above questions.

MF62VTK1 then seeks similar information to the above for all other columns

contained in the table that follow those which contain cell indices. Then it asks for the

name of another file. As is discussed above, if a name is not provided, it proceeds to

the writing of its VTK file. It then ceases execution.

Uses of MF62VTK1

As is obvious from the above description, MF62VTK1 prepares a model-pertinent

dataset (normally components of a model’s input dataset) for import into a

visualization package where the grid, and the properties associated with cells

belonging to this grid, can be viewed in three dimensions. See the following plot

where the boundary conditions associated with a simple model are displayed using the

public domain PARAVIEW package.

MF62VTK1 17

A model grid and boundary conditions displayed using PARAVIEW.

See Also

See also USG2VTK, USG2VTK1 and MF62VTK.

MF6ARRDET 18

MF6ARRDET

Function of MF6ARRDET

The role of MF6ARRDET is similar to that of programs ARRDET and

USGARRDET. MF6ARRDET reads a binary file written by MODFLOW6. It lists the

dataset that are present in this file in a user-nominated file. The MODFLOW6 binary

file that MF6ARRDET reads can contain arrays of model-calculated dependent

variables such as heads. Alternatively, it can contain cell-by-cell flow terms.

Using MF6ARRDET

Execution of MF6ARRDET begins with the prompt:

 Enter name of binary MODFLOW6-generated file:

It then asks whether this file is a dependent variable file or a flow budget file. The

first type of file contains quantities that are calculated by the model for every cell of

the grid, for example heads and drawdowns. The second type of contains flow

between individual cells, or between cells and boundary conditions. The prompt is:

 Is this a dependent variable (eg. head) or cell-by-cell flow file? [d/c]:

MF6ARRDET then asks about the type of grid that the MODFLOW6 model employs.

The question is:

 Is the model grid structured (i.e. DIS), DISV or DISU? [s/v/u]:

The answer to this question affects the nature and formatting of MF6ARRDET’s

output file. Its final prompt is for the name of this output file:

 Enter name for output file:

Uses of MF6ARRDET

Uses of MF6ARRDET are obvious. It allows a user to inquire into the contents of a

MODFLOW6 binary output file. Because it is a binary file, insights into its contents

must be provided by software that is able to read it.

See Also

See also MF6BUD2SMP and MF6MOD2OBS.

MF6BIN2TAB_H 19

MF6BIN2TAB_H

Function of MF6BIN2TAB_H

MF6BIN2TAB_H performs a similar role to that of USGBIN2TAB_H and

USGBIN2TAB_H1; however, it works with MODFLOW6 rather than with

MODFLOW-USG. MF6BIN2TAB_H reads a binary, dependent variable (e.g.

head/drawdown) file written by MODFLOW6. It tabulates the values of the

dependent variables that it reads from this file at a MODFLOW6 output time

nominated by the user; these values are recorded in a tabular ASCII file. The contents

of this file can be read by other utilities documented herein which undertake various

kinds of model postprocessing and display.

Using MF6BIN2TAB_H

As is discussed in MODFLOW6 documentation, system states such as head and

drawdown computed by MODFLOW6 can be recorded in binary, dependent variable,

output files. The way in which system state variables are stored depends on whether

the MODFLOW6 grid is structured, discretized by vertices, or is completely

unstructured. These grid types are referred to as “DIS”, “DISV” and “DISU” in

MODFLOW6 parlance. Regardless of its grid type, MODFLOW6 internal data

storage is node-based. Nodes are numbered sequentially from 1 to N where N is the

total number of nodes in the model grid. Special values, denoted by MODFLOW6

variables HINACT and HDRY, are used to signify an inactive or dry state for any

node. In contrast to previous versions of MODFLOW, MODFLOW6 provides its own

values for HINACT and HDRY, these being 1.0E30 and -1.0E30 respectively.

The contents of data arrays that appear in a MODFLOW6 binary, dependent variable

file can be tabulated using the MF6ARRDET utility. A MF6ARRDET output file

records simulation times associated with each array of dependent variable values.

Simulation times are recorded as the TOTIM variable in data array headers.

MF6BIN2TAB_H begins execution by prompting for the name of the binary,

MODFLOW6 dependent variable file that it must read:

 Enter name of binary MF6-generated file:

It then asks for the grid type on which the MODFLOW6 model is based:

 Is the model grid structured (i.e. DIS), DISV or DISU? [s/v/u]:

If the model grid is structured (i.e. of the DIS type), or is of the DISV type,

MF6BIN2TAB_H then asks the user how many layers are in the grid:

 How many layers in the model?

It then asks for the simulation time for which values of the dependent variable are to

be tabulated in its output file. This must pertain to a TOTIM value appearing in one or

a sequence of array headers that are recorded in the MODFLOW6 binary, dependent

MF6BIN2TAB_H 20

variable output file. As stated above, these can be discovered using the MF6ARRDET

utility:

 Enter simulation time (i.e. TOTIM) of interest:

Finally, MF6BIN2TAB_H prompts for the name of the tabular data file that it must

write:

 Enter name for node data table file:

The exact specifications of the file which MF6BIN2TAB_H writes depends on

whether the MODFLOW6 model employs a DIS, DISV or DISU grid. In all cases,

grid node numbers comprise the first column of this file; these are numbered

sequentially from 1 to the total number of nodes in the grid. The last column is

comprised of values of the dependent variable associated with all model nodes. The

header to this final column depicts the type of dependent variable which is listed, this

having been extracted from array headers in the MODFLOW6 binary, dependent

variable file which MF6BIN2TAB_H reads. If the grid is of the DISV type, then layer

numbers and cell numbers comprise columns 2 and 3 of the MF6BIN2TAB_H-

generated table. Cell numbers begin at 1 and extend to the number of cells in an

individual model layer; they are repeated for each layer. If the grid is of the DIS type,

then layer numbers, row numbers and column numbers comprise columns 2, 3 and 4

of the table recorded by MF6BIN2TAB_H in its output file.

Uses of MF6BIN2TAB_H

The ASCII file generated by MF6BIN2TAB_H can be used by other utility software

for post-processing of model-generated quantities. Such postprocessing may include

visualization, or generation of secondary quantities that are functions of primary,

model-generated quantities.

See Also

See also USGBIN2TAB_H, USGBIN2TAB_H1 and MF6ARRDET.

MF6BUD2SMP 21

MF6BUD2SMP

Function of MF6BUD2SMP

MF6BUD2SMP does for MODFLOW6 what USGBUD2SMP1 does for

MODFLOW-USG. That is, it reads a binary cell-by-cell flow term file written by

MODFLOW6, and records budget terms of interest in bore sample file format. Data

recorded in this format is amenable to further processing by Groundwater Data Utility

suite software. In particular, interpolation to the times of measured flows can be done

using the SMP2SMP utility. Programs PESTPREP1 and PESTPREP2 can be used to

prepare PEST input files in which budget terms comprise part of the calibration

dataset.

Using MF6BUD2SMP

Usage details of MF6BUD2SMP are identical to those of USGBUD2SMP1. Like the

latter program, MF6BUD2SMP reads a bore-to-budget file in order to ascertain

details of data which it must extract from a MODFLOW6 binary budget output file.

See documentation of USGBUD2SMP1 for full details of this file type.

Like USGBUD2SMP1, MF6BUD2MP1 records the information which it reads in

bore sample file format.

Uses of MF6BUD2SMP

MF6BUD2SMP can be run as a MODFLOW6 postprocessor as part of a batch file

run by PEST as “the model”. Model-calculated flows corresponding to measured

flows which comprise part of a calibration dataset can thereby be extracted from a

MODFLOW6 budget file. Interpolation to the times at which flow measurements

comprising the calibration dataset were made can be effected using the SMP2SMP

utility as a MF6BUD2SMP postprocessor, provided that measured flows are also

stored in bore sample file format.

Alternatively, MF6BUD2SMP does not necessarily need to be employed as part of a

calibration process. It can be used simply to extract flows of interest from a

MODFLOW6 budget file. The SMP2HYD utility can then be used to plot these flows

against time.

See Also

See also USGBUD2SMP1, MF6ARRDET, SMP2SMP, PESTPREP1 and

PESTPREP2.

MF6MOD2OBS 22

MF6MOD2OBS

Function of MF6MOD2OBS

MF6MOD2OBS performs a similar role to that of MOD2OBS, USGMOD2OBS and

USGMOD2OBS1. However it is designed to work with MODFLOW6 rather than

with MODFLOW or MODFLOW-USG. It reads a binary, dependent variable (e.g.

head or drawdown) file written by MODFLOW6. It also reads a bore sample file

containing measured values of this same dependent variable. It undertakes spatial and

temporal interpolation from the MODFLOW6 grid to the sites at which these

measurements were taken. Spatial interpolation is undertaken using interpolation

factors provided in a node-to-bore interpolation file.

Using MF6MOD2OBS

Typical MF6MOD2OBS prompts and responses are as follows.

 Enter name of node-to-bore interpolation file: file.ntb

 - 3 bores and assoc. nodal interpolation factors read from node-to-bore

 interpolation file file.ntb

 Enter name of bore listing file: wells.lst

 - 3 bores read from bore listing file wells.lst

 Reapportion interpolation factors if any dry/inactive nodes [y/n]? y

 Enter name of existing bore sample file: observ.smp

 Enter name of binary MF6-generated file: model.hds

 Enter value signifying inactive cells [1.0E30]: <Enter>

 Enter value signifying dry cells [-1.0e30]: <Enter>

 Is the model grid structured (i.e. DIS), DISV or DISU? [s/v/u]: s

 How many layers in the model? 80

 Enter time units used by model (yr/day/hr/min/sec) [y/d/h/m/s]: d

 Enter simulation starting date [dd/mm/yyyy]: 1/1/2000

 Enter simulation starting time [hh:mm:ss]: 0.0.0

 If a sample time does not lie between model output times, or if there is

 only one model output time, value at the sample time can equal that at

 nearest model output time:-

 Enter extrapolation limit in days (fractional if necessary): 10.0

 Enter name for bore sample output file: model.smp

 - bore sample file model.smp written ok.

As is apparent from the above prompts, use of MF6MOD2OBS is very similar to that

of USGMOD2OBS and USGMOD2OBS1. Spatial interpolation factors are provided

in a node-to-bore interpolation file, specifications of which are provided in

documentation for USGMOD2OBS.

Noteworthy points pertaining to the operation of MF6MOD2OBS (including

differences between MF6MOD2OBS and USGMOD2OBS/USGMOD2OSB1) are as

follows:

MF6MOD2OBS 23

1. MODFLOW6 provides its own values for HINACT and HDRY. These are

dependent variable values that are assigned to cells which are inactive or dry

respectively. MF6MOD2OBS provides these values as default values for these

variables; a user can accept these if he/she wishes, or provide alternative

values.

2. MF6MOD2OBS asks the user whether the MODFLOW6 grid is structured

(i.e. if it is of type DIS), of whether it is of the DISV or DISU types. If the grid

is of the DIS or DISV types MF6MOD2OBS asks the user for the number of

layers in the model. It requires this information in order to read the

MODFLOW6 binary, dependent variable output file.

3. Where a grid is of the DIS or DISV types, there is no need for interpolation

factors provided for a particular well in the node-to-bore interpolation file to

all belong to the same model layer. (Grids of the DISU type have no

knowledge of layering.) MF6MOD2OBS reads dependent variable values for

the entire grid (i.e. for all layers) before it applies spatial interpolation factors.

4. If measurements provided in a bore sample file pre-date or post-date the time

span of a simulation, then there can be no model-generated counterparts to

observations recorded for these measurements in the MF6MOD2OBS-

generated bore sample file. MF6MOD2OBS simply omits these samples from

its output file; the latter is thus shorter than the user-supplied bore sample file

based on field measurements. MF6MOD2OBS notifies the user of this once it

has written its output file.

5. As is recorded in documentation of MF6/USGMOD2OBS, if spatial

interpolation takes place from an inactive or dry cell to a well, then the

interpolation procedure can omit that well. Alternatively, if this is disallowed

by the user in response to the pertinent USGMOD2OBS prompt, the value of

the dependent variable interpolated to the well is recorded as

“dry_or_inactive”. Regardless of the user’s response to this prompt, if all

model nodes from which interpolation must take place are inactive or dry, then

the value of the interpolated variable is “dry_or_inactive”.

Uses of MF6MOD2OBS

The most common use of programs of the MOD2OBS suite is as simulator post-

processors comprising part of a model run by PEST. The bore sample files which they

write thereby contain model-generated counterparts to observations. As such, these

files are read by PEST. Instruction files that read MF6MOD2OBS-generated bore

sample files can be written by the PESTPREP1 and PESTPREP2 utilities. These

utilities can also write pertinent sections of a PEST control file.

See Also

See also MOD2OBS, USGMOD2OBS, USGMOD2OBS1, PESTPREP, PESTPREP1

and MF6BUD2SMP.

MF6MOD2SMP 24

MF6MOD2SMP

Function of MF6MOD2SMP

MF6MOD2SMP does for MODFLOW6 what MOD2SMP does for MODFLOW and

USGMOD2SMP does for MODFLOW-USG. It reads a MODFLOW6 binary,

dependent-variable file (containing, for example, heads or drawdowns). For each

model output dataset that it finds in this file, it undertakes spatial interpolation from

nodes of the model grid to the sites of bores; interpolation factors are provided in a

user-supplied node-to-bore interpolation file. Interpolated values are recorded in a

bore sample file. The number of values of the MODFLOW6-generated dependent

variable that is assigned to each bore is equal to the number of simulation times that

are represented in the MODFOW6 binary output file that is read by MF6MOD2SMP.

Many members of the Groundwater Data Utilities suite are able to manipulate data

contained in a bore sample file. A MF6MOD2SMP output file is immediately

available for processing by these programs.

Using MF6MOD2SMP

Program MF6MOD2SMP will not run unless a settings file (named settings.fig) is

present within the directory from which it is invoked. As is discussed in Part A of this

manual, a settings file informs MF6MOD2SMP of the manner in which dates must be

read and written by programs of the Groundwater Data Utilities suite.

MF6MOD2SMP commences execution with the prompt:

 Enter name of node-to-bore interpolation file:

The name of the appropriate file should be provided in response to this prompt. If a

default filename for the node-to-bore interpolation file has been read from a filename

file (named files.fig) resident in the current directory, that filename will appear with

the above prompt. (The pertinent line of this file will say

“node_to_bore_interpolation_file = file”, where file is the name of the file; see Part A

of this manual.) This name can be accepted by pressing the <Enter> key, or rejected

by supplying the correct filename. Note that, as is the case for other members of the

Groundwater Data Utilities suite, responding to any prompt with “e” (for “escape”)

takes you back to the previous prompt. In this way mistakes can be quickly corrected.

As discussed in Part A of this manual, a node-to-bore interpolation file contains the

node number(s) and corresponding nodal interpolation factor(s) associated with each

user-supplied bore. Nodal interpolation factors for each bore must sum to unity. For a

given bore, node associations can extend across multiple MODFLOW6 model layers.

An example node-to-bore interpolation file follows. Note that an error message will

be issued if illegal node numbers (zero, negative, or in excess of the number of nodes

in the model grid) are cited in the node-to-bore interpolation file, or if nodal

interpolation factors for a bore do not sum to unity.

MF6MOD2SMP 25

419001A 1 28435 1.000

419003B 3 31985 0.425 11986 0.250 22286 0.325

A381 4 123 0.340 133 0.260 99 0.300 1005 0.100

Part of a node-to-bore interpolation file.

A user is able to select which of the bores cited in the node-to-bore interpolation file

will appear in the final MF6MOD2SMP output file by providing the name of a bore

listing file in response to the prompt:

 Enter name of bore listing file:

Each bore cited in the bore listing file should also be cited in the node-to-bore

interpolation file. If desired, the bore listing file can also be the node-to-bore

interpolation file; thus all bores cited in the node-to-bore interpolation file will take

part in the spatial interpolation process.

When carrying out spatial interpolation to a specific bore location from MODFLOW6

nodes using interpolation factors supplied in the node-to-bore interpolation file, two

options are available to address the situation whereby dry or inactive conditions are

encountered at one or more of these nodes. The first option is to set the interpolated

“value” for the bore to “dry_or_inactive” if any node associated with the spatial

interpolation process pertaining to that bore is itself dry or inactive. Alternatively,

MF6MOD2SMP can automatically reapportion user-supplied interpolation factors for

those nodes that remain active and wet after omission of the offending dry/inactive

nodes from the interpolation process. The adjusted interpolation factors sum to 1.0

while retaining their original ratios. MF6MOD2SMP requires that the user select

which of these options to take:

 Reapportion interpolation factors if any dry/inactive nodes [y/n]?

MF6MOD2SMP next prompts the user for the name of the MODFLOW6 binary

dependent-variable file that it must read:

 Enter name of binary MF6-generated file:

It next asks:

 Enter number equal or greater than output times in this file:

MF6MOD2SMP needs to know the number of different output times that are featured

in the binary MODFLOW6-generated file so that it can dimension arrays

appropriately before reading it. If you are unsure of the contents of this file, use

program MF6ARRDET to echo the headers to arrays that are stored in it.

Alternatively, in response to the above prompt, supply a number that you are sure is

greater than the number of output times represented in the file; if this number is not

large enough, MF6MOD2SMP will soon inform you.

In order that it can detect the presence of dry and/or inactive cells and, if necessary,

readjust interpolation factors in the manner described above, MF6MOD2SMP next

prompts:

 Enter value signifying inactive cells [1.0E30]:

MF6MOD2SMP 26

 Enter value signifying dry cells [-1.0E30]:

The default values in the above prompts are those that are adopted by MODFLOW6.

To accept them, simply press <Enter> in each case.

MF6MOD2SMP’s next prompt pertains to the nature of the MODFLOW6 grid. It

asks:

 Is the model grid structured (i.e. DIS), DISV or DISU? [s/v/u]:

Then, if the grid is of the DIS or DISV type, MF6MOD2SMP asks for the number of

layers in the grid:

 How many layers in the model?

It requires this information so that it can dimension internal arrays prior to reading the

MODFLOW6 output file.

Before it can generate a bore sample file, MF6MOD2SMP needs to know how to

convert elapsed model simulation times to true dates and times. So it asks:

 Enter time units used by model (yr/day/hr/min/sec) [y/d/h/m/s]:

 Enter simulation starting date [dd/mm/yyyy]:

 Enter simulation starting time [hh:mm:ss]:

(Note that the date format used in the second of the above prompts depends on the

contents of the settings file settings.fig.) Then, after prompting:

 Enter name for bore sample output file:

MF6MOD2SMP reads the MODFLOW6 dependent-variable binary output file and

undertakes spatial interpolation to the sites of all bores listed in the bore listing file in

the manner described above. The outcomes of this interpolation process are recorded

in bore sample file format to the file whose name is provided in response to the above

prompt.

Uses of MF6MOD2SMP

Because it performs the dual functions of interpolating model results to bore locations,

and writing the outcomes of this interpolation procedure in bore sample file format,

MF6MOD2SMP makes model-generated data “look like” field data. Members of the

Groundwater Data Utilities suite which process bore sample files are thus able to

process model outcomes. In particular, SMP2HYD can be used to construct data files

that are readable by commercial plotting software, and can thus be used for the

plotting of borehole hydrographs. These hydrographs can be plotted on the same

graphs as measured borehole hydrographs, thus enabling a comparison to be made

between model-generated and field data. Program SMP2SMP can be used to

interpolate model-calculated values of system state to the times at which

measurements were taken of these quantities. Combined use of MF6MOD2SMP and

SMP2SMP thus emulates use of MF6MOD2OBS. Programs PESTPREP1 and

PESTPREP2 can then be used to facilitate construction of a PEST input dataset.

MF6MOD2SMP 27

See Also

See also SMP2SMP, MF6ARRDET, MF6BUD2SMP and MF6MOD2OBS.

PT2VTK 28

PT2VTK

Function of PT2VTK

Program PT2VTK reads a tabular data file. One of the data columns within this file

should contain the x (i.e. east) coordinates of a set of points, while another should

contain the y (i.e. north) coordinates of these points. Optionally, another column can

contain point z coordinates, while other columns may contain integer or real data

pertaining to the points. PT2VTK writes a VTK file which can be imported into

appropriate visualization software for displaying the points and the data associated

with them.

Using PT2VTK

PT2VTK commences execution by asking for the name of the tabular data file which

it must read:

 Enter name of tabular data file:

Next it asks how many lines should be skipped before the point coordinates and data

can actually be read. More often than not, the answer to this question will be “1”, as

the first line of a tabular data file contains column headers. All skipped lines are

ignored by PT2VTK. The prompt is:

 Skip how many lines at the top of this file?

Next it asks:

 Enter column containing X coordinates:

 Enter column containing Y coordinates:

 Enter column containing Z coordinates (<Enter> if none):

If no z coordinates are provided for the points, simply press <Enter> in response to the

last of the above prompts (or “e” to return to the previous prompt). If <Enter> is

indeed the response, then PT2VTK will assign the same z coordinate to all points

featured in the tabular data file, this being supplied in response to the question:

 Enter Z coordinate of all points:

Next PT2VTK offers to read other columns of the tabular data file, these presumably

containing data pertaining to the points. The offer can be declined by responding with

<Enter> only.

 Enter column number from which to read point data (<Enter> if no more):

If a column number is provided, two further questions follow:

 Enter a label for this data (12 characters of less):

 Is this integer or real data? [i/r]:

This three-question cycle is then repeated until the user indicates that all necessary

data have been read by responding to the first of these questions with <Enter>.

PT2VTK 29

Finally PT2VTK asks for the name of the “legacy” VTK file which it must write:

 Enter name for VTK file:

It then writes the file.

Uses of PT2VTK

As is described above, PT2VTK can be used to provide the means of adding point-

based data to a picture produced by software which can read a VTK file. This can be

particularly useful where the picture is of a model, and the points are pilot points used

to parameterize the model.

See Also

See also USG2VTK.

TAB2NDTF 30

TAB2NDTF

Function of TAB2NDTF

Program TAB2NDTF reads a tabular data file containing node numbers together with

data associated with those nodes. Note that there is no need for this file to cite all

nodes pertaining to a particular model. It re-writes node data that is recorded in

selected columns of this table in “node data table” format (see part 1 of this manual

for a description of this file type). The latter cites all nodes of an unstructured grid;

default values are provided for nodes that are not cited in the original file. A node data

table file is readable by USG2VTK. Hence the nodes and data in the original tabular

data file can be displayed in conjunction with other aspects of the unstructured grid.

Using TAB2NDTF

As for any other member of the Groundwater Data Utilities suite, a user may respond

to any of TAB2NDTF’s prompts with “e” (for “Escape”) followed by <Enter>. This

will take TAB2NDTF execution back to the previous prompt.

TAB2NDTF commences execution with the prompt:

 Enter name of tabular data file:

The “tabular data file” may, in fact, be part of a MODFLOW-USG input file for a

package that requires that its data be supplied in tabular format. These packages

include the DRAIN, RIVER, GHB and many other packages. One of the columns in

this file must contain node numbers. These do not need to be in sequential order; nor

do all nodes within the grid need to be cited in this column. Other columns contain

data associated with the cited nodes.

Initial lines within the tabular data file can be skipped if an integer greater than zero is

supplied in response to TAB2NDTF’s next prompt, which is:

 Skip how many lines at the top of this file:

 Then it asks:

 Enter column containing node numbers:

For most MODFLOW-USG package input files this will be the first column. However

TAB2NDTF makes no assumptions about this matter, so that it can be used to read

other types of files containing nodal data.

Then follows a cycle of four prompts through which TAB2NDTF is informed of what

nodal data it must read from the its tabular data input file. This cycle is repeated until

broken. It is broken by responding with <Enter> to the first prompt in the cycle.

However at least one cycle must be completed, so that at least one type of node-

specific data must be read from the input file. The cycle of prompts is as follows:

 Enter column number from which to read node data (<Enter> if no more):

TAB2NDTF 31

 Enter a label for this data (12 characters of less):

 Is this integer or real data? [i/r]:

 Enter data value to assign to uncited nodes:

Next TAB2NDTF asks for the name of the node data table file which it must write:

 Enter name for node data table file:

Its final prompt is:

 Enter total number of nodes in model grid:

It is very important that this number be supplied correctly, for correct writing of the

node table data file depends on it. This is because very node of the grid must be cited

in this file. If unsure of this number, it can be found in the DISU file (see

MODFLOW-USG documentation). If the “grid” is in fact a CLN network, the number

of CLN nodes can be found in the CLN package input file.

After being informed of this number, TAB2NDTF reads its input tabular data file and

writes its output node data table file. If any errors are found in the former, these are

reported to the screen.

Uses of TAB2NDTF

TAB2NDTF was written in order to facilitate display of MODFLOW-USG data

associated with certain of its packages, namely those which read data in tabular

format. Input data associated with a certain stress period can be extracted from the

MODFLOW-USG input file associated with that package and placed into a file of its

own using the cutting and pasting functionality of a text editor. TAB2NDTF can then

read this file, extracting stress-period-specific data from it. The data can then be

recorded in a format ready for the use of USG2VTK.

The figure below shows the domain of a model with fixed head cells coloured blue

and most other cells coloured green. Both are displayed as transparent. Within the grid

MODFLOW-USG RIVER cells are coloured as brown to yellow, the colour reflecting

the DRAIN conductance assigned to each such cell. The locations and properties of

these cells are readily visible from this picture.

TAB2NDTF 32

See Also

See also PT2VTK, USG2VTK, USGPROP2TAB1, USGPROP2TAB2,

USGBIN2TAB_H and USGBIN2TAB_H1.

USG2VTK 33

USG2VTK

Function of USG2VTK

Program USG2VTK writes a “legacy” VTK file based on an unstructured grid or

CLN network. Optionally this file can include data associated with nodes comprising

the grid or network. This allows the grid or network to be coloured according to

values associated with these nodes when the grid is visualized using a modeller’s

chosen visualization platform.

 “VTK” stands for “visualization toolkit”. The visualization toolkit is an open-source,

freely available software system for 3D computer graphics, image processing and

visualization. Files used by this software are supported by many visualization

packages which are built from this toolkit. One of these packages is the public domain

PARAVIEW package. See www.paraview.org for full details of this package. It can

import VTK files written by USG2VTK, thereby allowing three dimensional display

of MODFLOW-USG model components, as well as grid/CLN properties and system

states, the latter having been computed by MODFLOW-USG.

The protocols for MODFLOW-USG grid and CLN specification files are presented in

part A of this manual.

Using USG2VTK

USG2VTK begins execution by asking for the name of a MODFLOW-USG grid

specification file. This file can specify the geometry of a MODFLOW-USG grid;

alternatively it can specify the geometry of a MODFLOW-USG CLN network.

USG2VTK knows the difference between the two from the contents of the grid

specification file; see part A of this manual. It asks:

 Enter name of MODFLOW-USG grid specification file:

Next USG2VTK reads part of the file, establishing its specifications and checking its

integrity. It then asks whether any so-called “scalar” data is to be recorded in the VTK

file. “Scalar” is VTK terminology. In the present context it means data associated with

the nodes of the unstructured grid or CLN network. Its prompt is:

 Record scalar data in VTK file? [y/n]:

If the answer to this question is “n”, then USG2VTK simply writes the VTK file and

ceases execution. Alternatively, if the answer is “y”, USG2VTK asks for the name of

the file from which it must read data pertaining to grid or CLN nodes

 Enter name of tabular file from which to read node data:

The contents of the file whose name is supplied in response to this prompt must meet

certain specifications. These are:

• It must contain columns of space- or tab-delimited data.

http://en.wikipedia.org/wiki/Open-source
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Scientific_visualization
http://www.paraview.org/

USG2VTK 34

• The first line of the file must contain column headers.

• There must be as many elements in each column as there are nodes of the grid

or CLN.

• Data elements within each column are associated with nodes starting with

node number 1, and with an increment of 1 proceeding down the column.

Part of a tabular data file is presented in the figure below.

 ZONE_INDEX Kh

 1 1.034e-1

 1 2.518e-1

 1 3.322e-1

 1 2.981e-1

 1 1.850e-1

 1 5.200e-1

 2 7.453e-1

 2 9.564e-1

 3 3.817e-1

 3 4.339e-1

 3 5.964e-1

 3 6.072e-1

 3 5.834e-1

 3 2.558e-1

 etc

Part of a tabular data file containing nodal data.

After opening the file named by the user, USG2VTK prompts:

 Enter column number of data to read (<Enter> if no more):

 Is this integer or real data? [i/r]:

Columns are numbered from 1, starting at the left. Provide the indices of as many

columns as desired. These indices can be in any order. Once enough indices have

been provided, press <Enter> instead of a column number. USG2VTK will then write

the VTK file.

As for all other members of the Groundwater Data Utilities suite, a response of “E” or

“e” to any prompt instructs USG2VTK to return to the preceding prompt.

Uses of USG2VTK

The figure below shows a picture generated by PARAVIEW. PARAVIEW obtained

the grid design specifications and nodal data required for generation of this plot from

a USG2VTK-generated VTK file. PARAVIEW provides high level display

functionality, including sectioning, selection-by-threshold, display of multiple data

types, etc.

Tables of USG2VTK-readable node data can be generated by programs such as

USGBIN2TAB_H, USGBIN2TAB_H1, USGPROP2TAB1 and USGPROP2TAB2.

USG2VTK 35

See Also

See also USG2VTK, USGBIN2TAB_H, USGBIN2TAB_H1, USGPROP2TAB1 and

USGPROP2TAB2.

USG2VTK1 36

USG2VTK1

Function of USG2VTK1

USG2VTK1 is very similar in its specifications and operations to USG2VTK.

However it differs in two important respects. These are as follows.

• USG2VTK1 cannot process data contained in an unstructured grid

specification file which contains specifications for a CLN network; CLN data

must be processed by USG2VTK.

• In writing a legacy VTK file, USG2VTK1 represents cells using VTK

POLYHEDRA (cell type 42). These are more complicated than VTK

HEXADRA (cell type 12) used by USG2VTK. However, unlike USG2VTK,

USG2VTK1 can accommodate cells produced by software packages such as

ALGOMESH which generate prismatic cells of arbitrary cross-sectional

shape.

Using USG2VTK1

Prompts and responses of USG2VTK1 are identical to those of USG2VTK.

Uses of USG2VTK1

Where cell types are not rectangular in cross section, then USG2VTK1 should be used

instead of USG2VTK. USG2VTK1 can accommodate cells whose upper and lower

boundaries are polygons of any shape, as long as the upper and lower polygons have

the same number of sides. The number of sides can differ between cells. These

specifications allow it to read and process unstructured grid specification files written

by the ALGOMESH mesh generator. See

http://www.hydroalgorithmics.com/index.php/software/algomesh

for details of this software package.

For USG2VTK1 to work properly with polyhedral cells, there are certain

specifications which a MODFLOW-USG grid specification file must possess which

are not listed in Part A of this manual. These additional specifications are now

provided.

The last (and often longest) part of an unstructured grid specification file lists every

node in the unstructured grid, one to a line. Following the node number on each line

are the node’s coordinates, and then the vertices that define the cell in which the node

lies. The protocol for each such line is:

inode x y z lay m (ivertex(i),i=1,m)

where

http://www.hydroalgorithmics.com/index.php/software/algomesh

USG2VTK1 37

inode is the node number (these should be listed in increasing order in

the file);

x, y and z are the coordinates of the node;

lay is the layer number to which the node belongs;

m is the number of vertices defining the cell which contains the

node; and

vertex(i) is the vertex index of the cell’s i’th vertex; vertex coordinates

are provided in the first part of the MODFLOW-USG grid

specification file.

USG2VTK1 requires that m be an even number. This follows from the fact that the

upper and lower polygons defining a polyhedral cell must have the same number of

vertices. The following vertex list must cite vertices pertaining to the cell’s upper

polygon first, and then those pertaining to the cell’s lower polygon next. Vertices

must be cited in either clockwise or anti-clockwise order; thus neighbouring nodes in

the list must be neighbouring nodes in respective polygons. Vertices in the upper and

lower polygon sublists must correspond to each other; that is, the first-listed upper

vertex is joined to the first-listed lower vertex, the second-listed upper vertex is joined

to the second-listed lower vertex, etc.

See Also

See also USG2VTK.

USGADDCOORD 38

USGADDCOORD

Function of USGADDCOORD

USGADDCOORD reads a tabular data file, such as a node table data file in which

nodes comprise the first column. A header line is also expected in this file. It adds

four columns to the file between the existing first and second columns; the latter then

becomes the fifth column. These new columns comprise the x, y, z and layer

coordinates of respective nodes featured in the first column. This table can then be

easily imported into display, GIS or visualization software. Note that nodes listed in

the node data table data file do not need to be complete, and can be listed in any order.

Using USGADDCOORD

USGADDCOORD is easy to use. Prompts are as follows:

 Enter name of MODFLOW-USG grid specification file:

 Enter name of node data table file:

 Enter name for new node data table file:

As stated above, the tabular data file read by USGADDCOORD must possess a text

header. Entries in this header after the first are pushed to the right and the headers

“NODE_X”, “NODE_Y”, “NODE_Z” and “LAYER” are inserted. In subsequent

lines the x, y, z coordinates and the layer number of the node featured in the first

column are inserted. Once again, other columns are pushed to the right.

Function of USGADDCOORD

Once nodal data is accompanied by node coordinates, this data can be visualized and

displayed. Suppose, for example, that you place DRAIN data for a particular stress

period into a text file of its own, while adding appropriate headers to this data.

USGADDCOORD can then be used to add coordinates and the layer number

corresponding to each drain node. The resulting table can then be imported into

PARAVIEW where so-called PARVIEW “filters” can be applied to create points with

drain elevation as the z-coordinate for each point. Drains can then be added to a model

visualization in their correct position. Colouring can be by layer, conductance, or

whatever is most fitting for the plot.

See Also

See also USG2VTK, USG2VTK1 and PT2VTK.

USGADDZCOORD 39

USGADDZCOORD

Function of USGADDZOORD

Program USGADDZCOORD reads a tabular data file containing information

pertaining to a set of points. The first column of this file is assumed to be comprised

of point identifiers; USGADDZCOORD treats these as character strings, but they can,

of course, be numbers. A length limit of 20 characters is assumed. The second and

third columns are assumed to be comprised of point x and y coordinates. If any

columns follow that, then one of them can optionally include model layer numbers

with which respective points are associated. (The points may, for example, be two-

dimensional pilot points that are used to parameterize one or a number of model

layers.)

USGADDZCOORD adds a column to this tabular data file. This will become the

fourth column of the file – the column that follows that which contains point y

coordinates. If the existing file has only three columns, this fourth column will then be

the last column of the file. However if the existing file has more than three columns,

then the fourth column is inserted after the third, and all other columns are then

shifted to the right. This fourth column ascribes z coordinates to the points represented

in the file. These z coordinates are obtained by x-y inverse-power-of-distance

interpolation between vertices of an unstructured grid. Vertex x, y, and z coordinates

are read from an unstructured grid specification file.

Using USGADDZCOORD

Program USGADDZCOORD begins execution by prompting for the name of the

unstructured grid specification file that it must read. The prompt is:

 Enter name of MODFLOW-USG grid specification file:

Optionally a user can supply a node data table file which informs USGADDZCOORD

which nodes are inactive. Interpolation from vertices associated with inactive nodes to

points in the tabular data file does not take place. The node data table file expected by

USGADDZCOORD must have a header. Node numbers must appear in the first

column of the file; all nodes in the model grid must be represented. The prompt is:

 Enter name of activity node data table file (<Enter> if none):

Then, if a filename is provided:

 Enter column number containing activities:

The column number must be 2 or greater. Integers must comprise the column. An

integer value of zero signifies an inactive node.

Next USGADDZCOORD prompts for the name of an existing tabular data file:

 Enter name of tabular data file:

USGADDZCOORD 40

The following are expected of this file:

• On any line, columns should be delimited by spaces or a tab.

• The first line of the file should be comprised of a header line which indicates

the contents of each column. Each header should be 20 characters or less in

length and not include a space.

To be sure that a header is indeed present in the tabular data file, USGADDZCOORD

asks the user:

 Does this file have a header line? [y/n]:

An answer of “n” to this prompt results in termination of USGADDZCOORD

execution with an appropriate error message. Otherwise USGADDZCOORD next

prompts:

 Enter column number containing layer data (<Enter> if none):

If the response to this prompt is <Enter>, then USGADDZCOORD asks the user for a

single layer number which is associated with all points in the file. The prompt is:

 Enter layer number to which this file pertains:

Next USGADDZCOORD asks the user how it must interpolate from vertex

coordinates provided in the grid specification file to each point that is represented in

the tabular data file. The prompts are:

 Enter power of inverse distance to use in interpolation:

 Enter search radius:

 Enter maximum number of points to use in interpolation:

A value of “2” normally constitutes a suitable response to the first of the above

prompts.

Where a grid is large USGADDZCOORD’s run time can be large. This run time can

be shortened by not using an unnecessarily large search radius.

A small number is normally adequate for the last of the above prompts – only 4 if a

grid is comprised of uniform square cells (and hence is not really unstructured at all).

It needs to be slightly larger than this where grid cells change size, or can increase in

number, over a short distance. It should not be too large however, for then the

averaging that is involved in inverse-power-of-distance interpolation can render the z

coordinate assigned to a point unrepresentative of its local position with respect to the

grid. Note that USGADDZCOORD multiplies the above number by 2 internally to

account for the fact that it uses both the upper and lower vertices associated with each

model cell in performing inverse-power-of-distance interpolation. Hopefully the

location ascribed to a point is then somewhere near the middle of the layer.

If a point lies outside the finite difference grid, then assignment of a z coordinate can

become problematical. USGADDZCOORD does not detect this condition; it simply

applies inverse-power-of-distance interpolation to all points cited in the tabular data

file regardless of their position. If the number of points used in the interpolation

USGADDZCOORD 41

process is not large, then the z coordinate ascribed to an outside-of-grid point will

approximate those of the closest grid vertices to it.

Uses of USGADDZCOORD

USGADDZCOORD can facilitate display of two-dimensional pilot points in a three-

dimensional visualization package such as PARAVIEW. The tabular data file that it

produces can be imported into PARAVIEW as a table. This table can then be

subjected to the “table to points” filter, after which the points can then be plotted in

three dimensions. Though the z coordinates of two-dimensional pilot points play no

part in their usage (this being to interpolate properties to the nodes of a grid), it is

visually pleasing to ascribe them to locations at which they “conceptually situated” in

performing this interpolation when viewing them and the model grid together.

See Also

See also USG2VTK, USG2VTK1 and USGADDCOORD.

USGARRDET 42

USGARRDET

Function of USGARRDET

USGARRDET reads a binary output file written by MODFLOW-USG. This can be a

head/drawdown or cell-by-cell flow term output file; however the grid must be of the

unstructured type. USGARRDET lists the contents of this file to an ASCII file whose

name is provided by the user.

USGARRDET does for MODFLOW-USG what ARRDET does for MODFLOW.

However it is more powerful than ARRDET in that it is able to read cell-by-cell flow

term (i.e. budget) files as well as head/drawdown files.

Using USGARRDET

Use of USGARRDET is simple. Typical prompts and responses are as follows.

 Enter name of unformatted MFUSG-generated file: haughton.cbb

 Is this a head/drawdown or cell-by-cell flow file? [h/c]: c

 Enter name for output file: temp.dat

 - 136 arrays read from file haughton.cbb.

 - file temp.dat written ok.

Though simple to use, a number of things can go wrong when running USGARRDET.

For example the user may ask USGARRDET to read a binary MODFLOW-USG

output file that pertains to a structured rather than an unstructured grid. He/she may

also inform USGARRDET that the file contains head or drawdown data when, in fact,

it contains budget data, or vice versa. In any of these cases the headers to the various

data arrays stored in the binary file will not be as USGARRDET expects. If

USGARRDET reads what seems like unusual data from an array header it will write

the contents of this header to the screen and then cease execution with an appropriate

error message. On other occasions its behaviour may be more erratic. For example it

may misread the dimensions of the grid from the header and try to allocate memory

for a grid which is far larger than that actually employed by the model, perhaps asking

for more memory than the computer can give it; an obscure compiler-generated error

message may then appear.

Uses of USGARRDET

The contents of a binary data file cannot be read directly by a human being.

USGARRDET allows a modeller to be informed of the entire contents of a binary

head/drawdown or cell-by-cell flow term file written by MODFLOW-USG. He/she

can then use other programs documented herein (such as USGBIN2TAB_H) to

extract these arrays and subject them to further processing.

USGARRDET 43

See Also

See also ARRDET, USGARRDET_DBL, USGBIN2TAB_H and

USGBIN2TAB_H1.

USGARRDET_DBL 44

USGARRDET_DBL

Function of USGARRDET_DBL

USGARRDET_DBL is identical to USGARRDET except for the fact that it reads a

binary MODFLOW-USG output file wherein real variables are recorded in double

precision.

If USGARRDET ceases execution with an error message which states that binary file

contents or headers do not make sense, then try USGARRDET_DBL. If the problem

persists, then it may be rooted in the fact that different FORTRAN compilers use

different methods for storage of unformatted (as distinct from binary) files.

USGBIN2CSV_H 45

USGBIN2CSV_H

Function of USGBIN2CSV_H

USGBIN2CSV_H reads a binary head/drawdown file written by MODFLOW-USG.

It records heads/drawdowns over user-specified output times for user-specified nodes

as a series of CSV files, one for each output time. These have a common root name.

Because of this they can be imported into PARAVIEW as a block. Using standard

PARAVIEW filters, these can be translated into a series of three-dimensional surfaces

that can be displayed, contoured and animated.

Using USGBIN2CSV_H

As for all other members of the Groundwater Data Utilities suite, a response to any

prompt which is comprised solely of the “e” character takes the user back to the

previous prompt.

USGBIN2CSV_H begins execution by reading an unstructured grid specification file.

From this it obtains the eastings and northings of all nodes in the unstructured grid.

The prompt is:

 Enter name of MODFLOW-USG grid specification file:

It then prompts for the name of a binary head/drawdown file, and for the inactive

threshold in this file. Heads/drawdowns whose absolute values are above this

threshold are not represented in files written by USGBIN2CSV_H as they are

presumed to pertain to inactive or dry cells. The prompts are:

 Enter name of MODFLOW-USG binary head/drawdown file:

 Enter inactive threshold for array data in this file:

Cells represented in USGBIN2CSV_H binary output files can be selected by layer, or

by providing a list of nodes in a prepared file. The choice between the two is made

through responding appropriately to the following prompt:

 Enter layer of interest (<Enter> to read list of nodes from a file):

If the user simply presses <Enter> in response to this prompt, he/she is then

prompted:

 Enter file to read list of nodes from:

 Skip how many lines at top of file?

Nodes must be arranged one-to-a-line. Other data can follow the node number on each

line of this file; however the node number must be the first item on each line of the

file.

Then, regardless of whether node selection takes place by layer number or file, the

user is prompted:

 Enter starting simulation time of interest:

 Enter ending simulation time of interest:

USGBIN2CSV_H 46

The simulation time associated with MODFLOW-USG array is recorded as the

TOTIM variable in the header to each such array. Only heads/drawdowns between

and including the two user-specified times will be represented in USGBIN2CSV_H

output files. (Note that a listing of the contents of a MODFLOW-USG binary file can

be obtained using the USGARRDET utility.)

USGBIN2CSV_H’s next prompt is:

 Enter filename base for CSV output files:

Suppose that the response to this prompt is “filename”. Then output files will be

named filename1.csv, filename2,csv etc. When PARAVIEW is asked to read a series

of files whose names follow this protocol it assumes that they pertain to a series of

sequential times. Its functionality is such as to animate such data.

Finally USGBIN2CSV_H asks:

 Enter name for time index table file:

This file contains two columns. These associate a simulation time (i.e. TOTIM) with

each CSV file.

CSV files written by USGBIN2CSV_H contain four columns. The first is node

number while the second and third are node eastings and northings (i.e. x and y

coordinates). The label of the fourth is taken from the array headers in the

MODFLOW-USG binary output file. Normally this will be “HEADU”.

Uses of USGBIN2CSV_H

USGBIN2CSV_H was written primarily to expedite use of PARAVIEW in

visualizing MODFLOW-USG outputs. The following protocol can be adopted to

import files written by USGBIN2CSV_H and then view them as surfaces.

1. Read them into PARAVIEW as a CSV file set.

2. Use the “table to points” filter to convert to points. Assign the X column to

data labelled “X”, the Y column do data labelled “Y” and the Z column to data

whose label pertains to the MODFLOW-USG data type (normally

“HEADU”). Check the “Keep all data arrays” box.

3. Use the “Delaunay 2D: filter to create a surface from these points. Colour as

appropriate.

4. If desired, use the “Contour” filter to add animated contours to the surfaces.

See Also

See also USGBIN2TAB_H, USGBIN2TAB_H1 and USGARRDET.

USGBIN2TAB_H 47

USGBIN2TAB_H

Function of USGBIN2TAB_H

USGBIN2TAB_H reads a binary head/drawdown file written by MODFLOW-USG.

It tabulates in an ASCII file heads or drawdowns calculated at a user-nominated

simulation time at all nodes in the grid. The contents of this file can be read by other

MODFLOW-USG related utilities which undertake various kinds of model

postprocessing and display.

Using USGBIN2TAB_H

Optionally, heads and drawdowns computed by MODFLOW-USG can be recorded in

binary output files. Heads and drawdowns can pertain to grid or connected linear

network (CLN) nodes. Simulation times at which these are recorded can be set by the

modeller through MODFLOW-USG’s output control functionality. As is documented

in the MODFLOW-USG manual, heads and drawdowns for model grid nodes are

recorded as layer-specific arrays, each preceded by a header which describes the

contents of the following array, including the layer and simulation time to which the

array pertains. In contrast, CLN heads and drawdowns at any particular output time

are recorded in a single array, also following an appropriate header. The contents of

all array headers contained within any MODFLOW-USG binary head/drawdown file

can be ascertained using the USGARRDET utility described elsewhere in this manual.

Program USGBIN2TAB_H extracts heads or drawdowns pertaining to a particular

simulation time. It writes this data as a table wherein each head or drawdown value is

clearly associated with the node to which it pertains.

USGBIN2TAB_H obtains the dimensions of the unstructured grid, and the number of

nodes within each layer of the grid, from the binary output file which it reads. For it to

do this correctly, heads/drawdowns for all layers must be represented within the

output file. (In the case of CLN data no such precautions need to be taken as CLN-

calculated heads or drawdowns are recorded in a single array at each output time;

CLN nodes are not associated with model layers.)

It is important to note that use of USGBIN2TAB_H is predicated on the assumption

that MODFLOW-USG employs an unstructured grid. If this is not the case, binary

array headers, and ensuing binary array contents, will not be intelligible to it. If it is

asked to read a binary output file associated with a structured grid, USGBIN2TAB_H

will record either a self-generated or compiler-generated error message that makes

reference to an unintelligible array header. Programs such as MANY2ONE or

GETMULARR must be used for binary data extraction in the structured grid context.

USGBIN2TAB_H’s prompts, and typical responses, are as follows.

 Enter name of MFUSG binary head/drawdown file: umodel_usg.cln.hds

 Enter simulation time (i.e. TOTIM) of interest: 7305

 Enter name for node data table file: test3.dat

 - file test3.dat written ok.

USGBIN2TAB_H 48

Part of a tabular data file written by USGBIN2TAB_H appears in the following

figure.

 NODE_NUMBER HEADU

 1 859.3523

 2 859.3523

 3 859.3518

 4 859.3481

 5 859.3445

 6 859.2001

 7 859.2001

 8 859.2000

 9 859.1982

 10 859.1965

 11 859.2421

 12 859.2421

 13 859.2419

 14 859.2405

 15 859.2390

 16 859.3923

 17 859.3923

 etc

Part of the ASCII tabular data file written by USGBIN2TAB_H.

As is apparent from the above figure, a USGBIN2TAB_H tabular output file contains

two columns of data. The first contains node numbers. These are numbered

sequentially from 1 to the largest node number in the unstructured finite-difference

grid (or the largest CLN node number if appropriate). The second column records the

head or drawdown associated with each such node. The header to the second column

is taken directly from the MODFLOW-USG binary file; however underscores replace

any spaces that are present within the header.

USGBIN2TAB_H requires that the user choose a simulation time for data extraction

from the MODFLOW-USG binary output file. The times for which output are

available can be obtained using the USGARRDET utility; these output times are listed

as the MODFLOW-USG TOTIM variable.

A single MODFLOW-USG head/drawdown binary output file may contain different

types of data. For example, it may contain both head and drawdown data for both grid

nodes and CLN nodes. If this is the case only the first data type recorded at the user-

specified simulation time is transferred to the tabular output file. (It is better practice

to instruct MODFLOW-USG to record data of different types in different binary

output files.)

Uses of USGBIN2TAB_H

The ASCII file generated by USGBIN2TAB_H can be used by other utility software

for post-processing of model-generated quantities. Such postprocessing may include

visualization, or generation of secondary quantities that are functions of model-

generated quantities.

See Also

See also USGBIN2TAB_H1, USGARRDET, USGPROP2TAB1, USGPROP2TAB2.

USGBIN2TAB_H1 49

USGBIN2TAB_H1

USGBIN2TAB_H1 is identical to USGBIN2TAB_H except for the fact that its output

file includes an extra column. This column lists the layer number associated with each

node.

USGBUD2SMP 50

USGBUD2SMP

Function of USGBUD2SMP

USGBUD2SMP functions in much the same way as does the BUD2SMP utility for

conventional, structured, MODFLOW; however USGBUD2SMP reads an

unstructured budget file produced by MODFLOW-USG. As for BUD2SMP, the

binary cell-by-cell flow term file (i.e. the budget file) must be written using the

COMPACT protocol by MODFLOW-USG.

USGBUD2SMP extracts flow rates accumulated over one or a number of user-defined

zones within the model domain for all times represented in the cell-by-cell flow term

file. It then records these flow rates in bore sample file format. A file written by

USGBUD2SMP can then be processed using the SMP2HYD utility for plotting of

flows against time in each zone. Alternatively (or as well) SMP2SMP can be

employed to write another bore sample file in which flow rates are matched to those

recorded in a measurement bore sample file. PESTPREP, PESTPREP1 or

PESTPREP2 can then be used to automate construction of a PEST input dataset in

which modelled flows are matched to their observed counterparts.

Using USGBUD2SMP

As for many of the Groundwater Data Utilities, immediately upon commencement of

execution USGBUD2SMP looks for a file named settings.fig in the subdirectory from

which it was invoked. If this file is not found, USGBUD2SMP terminates execution

with an appropriate error message. As is explained in Part A of this manual, the

contents of file settings.fig inform those utilities that read it of the format to use in

representing dates.

USGBUD2SMP’s first prompt is:

 Enter name of MFUSG unformatted BUDGET output file:

USGBUD2SMP can only process cell-by-cell flow term files produced by

MODFLOW-USG if MODFLOW-USG employs an unstructured grid. Furthermore,

USGBUD2SMP can only read such files if they are stored in COMPACT form. This

is because files stored in this form contain timing information (lacking in other forms

of MODFLOW-USG budget storage) which is essential for the recording of flow data

in a manner that allows plotting against elapsed simulation time. If USGBUD2SMP

discovers that the cell-by-cell flow term file whose name was provided above is not,

in fact, stored in COMPACT form, it terminates execution with an appropriate error

message. (If your MODFLOW-USG pre-processor does not provide an option for file

storage in this manner this is not a problem, for a user can easily create a

MODFLOW-USG OUTPUT CONTROL file him/herself which directs MODFLOW-

USG to store files in COMPACT form. See MODFLOW-USG documentation for

details.)

USGBUD2SMP 51

It is important to note that for if a MODFLOW-USG model employs a Connected

Linear Network (CLN) process, budget output from the CLN process should be

written to a different file from that used to record the Groundwater Flow (GWF)

process budget terms.

USGBUD2SMP next prompts:-

 Enter maximum number of output times:

Through its OUTPUT CONTROL input dataset, MODFLOW-USG is directed to

provide cell-by-cell flow term output at the end of certain time steps, stress periods, or

at particular simulation times. In response to the above prompt, you should inform

USGBUD2SMP of the total number of times for which there is such cell-by-cell

output. If you are unsure, simply enter a number that is likely to exceed the number of

output times; USGBUD2SMP uses this number solely to dimension internal arrays. If

the number is too large, it does not matter (except if it is so large that USGBUD2SMP

runs out of memory). If it is too small, USGBUD2SMP will inform you of this later in

its processing and ask that you run it again, supplying a higher number for this

parameter.

USGBUD2SMP’s next prompt is:-

 Enter text to identify MFUSG flow type:-

Whenever it writes an array to its cell-by-cell flow term file, MODFLOW-USG first

records an array header. The header contains timing information as well as a 16-

character identifier of the flow type represented in the following array. Some of these

identifiers are set out in the tables below for the GWF and CLN processes

respectively. Note that the flow term "FLOW JA FACE", which refers to flow

between connected cells, is not accommodated by USGBUD2SMP at present as this

flow term is inter-zonal rather than zone-specific; arrays of this type are simply

ignored. Computation of zone-to-zone flows based on this type of cell-by-cell flow

information can be undertaken using the USGS ZONBUDUSG utility (refer

http://water.usgs.gov/ogw/mfusg/).

Package Text Identifier

bcf/lpf STORAGE

bcf/lpf CONSTANT HEAD

bcf/lpf FLOW JA FACE

flow and head boundary SPECIFIED FLOWS

general head boundary HEAD DEP BOUNDS

well WELLS

drain DRAINS

river RIVER LEAKAGE

http://water.usgs.gov/ogw/mfusg/

USGBUD2SMP 52

evapotranspiration ET

recharge RECHARGE

Some text identifiers contained in cell-by-cell flow term array headers for the

GWF process.

Package Text Identifier

cln CLN STORAGE

cln CLN CONST HEAD

cln FLOW CLN FACE

cln GWF TO CLN

Some text identifiers contained in cell-by-cell flow term array headers for the

CLN process.

The user should supply at least part of an appropriate text identifier in response to the

above prompt. If the user-supplied text occurs within an array identifier, that array

will be processed by USGBUD2SMP. Otherwise the array is ignored. Only enough

text needs to be provided in response to the above prompt to uniquely identify one

particular flow type. If the user wishes to plot more than one flow term type against

time, he/she should run USGBUD2SMP more than once, supplying a different text

string in response to the above prompt on each occasion. (Note that, as is explained

below, the user may ascertain the text identifiers pertaining to various MODFLOW-

USG packages by reading USGBUD2SMP’s record file after USGBUD2SMP has

finished execution. Alternatively, USGARRDET can be used for this purpose.)

USGBUD2SMP next prompts:-

 Enter simulation starting date [dd/mm/yyyy]:

 Enter simulation starting time [hh:mm:ss]:

 Enter time units employed by model [y/d/h/m/s]:

(Note that date representation will be in the format “mm/dd/yyyy” instead of

“dd/mm/yyyy” if this is appropriately denoted in the settings file settings.fig.)

USGBUD2SMP requires the above information so that it can record the date and time

pertaining to every flow rate on its output file.

The user is then requested to provide the nodal dimension of the model:-

 Enter total number of nodes in grid/network:

If USGBUD2SMP is reading a budget file associated with the CLN process, the

number of nodes supplied in response to the above prompt must pertain to the CLN

network rather than to the MODFLOW-USG flow grid. This information allows

USGBUD2SMP to check the integrity of the MODFLOW-USG budget file; it also

allows USGBUD2SMP to know the size of the integer zone list array that it must

read. This happens next.

USGBUD2SMP 53

As for the BUD2SMP utility (of which USGBUD2SMP is the unstructured grid

equivalent), flows in and out of nodes are accumulated over zones. A zone is defined

as the collection of nodes to which the same integer value is assigned. Note, however,

that nodes which are assigned an integer value of zero are presumed to belong to no

zone at all, and hence are ignored. This allows a user to ascertain flows within a small

part of the model domain by supplying a series of zone numbers which are

everywhere zero except within that part of the domain which is of interest.

Zonation is defined through an integer zone list read from a file. This list must

provide the zone number ascribed to each node in the MODFLOW-USG flow grid or

CLN network. An integer must be supplied for each node within the GWF or CLN

grid. Integers in the list must be supplied in node sequential order. They are read using

free-field format; hence each number must be separated by whitespace (including

blanks, tabs or a new line) or a comma. Thus the file can be tabular, with zone

numbers recorded on consecutive lines of the file; alternatively the integer zonation

list can be written in traditional array-type format, with many integers arranged on

each of many consecutive lines. The “n*I” convention can be used in this context; this

represents a string of n integers of value I.

USGBUD2SMP prompts for the name of the file containing the integer zonation list

as follows:

 Enter name of integer zonation list file:

USGBUD2SMP does not insist that the list of zone-defining integers be the only

occupant of the file from which the list is read. Hence it asks how to find the integer

list on the file. Two options are available, namely an indicator text or a line number.

The prompt is:

 Locate integer list using text string or line number? [t/l]:

If text is chosen, the user is next prompted for the pertinent text string:-

 Enter text string:-

Supply enough text to uniquely locate a header in the input file (you need only supply

a substring of the header text). Note, however, that if the text does not uniquely

demarcate a header in response to the above prompt, then the first match to this text

will be assumed to be correct. Note also that the text search is case-insensitive.

USGBUD2SMP assumes that the integer list begins on the line following the

identified text string.

Alternatively, if the line number option was selected, MODFLOW-USG prompts:-

 Enter line number:

in response to which an appropriate line number must be supplied. Free-field reading

of the integer list will begin at that line.

By way of example, suppose that the file containing the integer zonation list is as

follows. USGBUD2SMP could be guided to the array using either the text string

“zones” or the line number “4”.

Line #1

USGBUD2SMP 54

Line #2

MFUSG NODAL ZONES

1 2 2 2 2

1 1 0 2 2

1 1 0 3 3

2*3

1

1

1

Example of a file containing an integer zonation list for a MODFLOW-USG

groundwater flow or connected linear network grid.

When writing a bore sample file, USGBUD2SMP needs to know the “bore identifier”

to assign to each zone. So for each different non-zero zone that it finds in the zone-

defining integer list it asks:-

 Enter identifier for flows in zone n:

where n is a zone-defining number occurring within the nodal integer list. Supply a

name comprised of 20 characters or less; no two zones should be supplied with the

same identifier. No spaces are allowed in this name.

USGBUD2SMP writes two files. One is a bore sample file, the other is a file

recording the details of all arrays found in the cell-by-cell MODFLOW-USG output

file. If you wish to simply know what arrays are present in this file without

necessarily creating a bore sample file, run USGBUD2SMP, supplying a flow

identification text string which does not match any of the array identifiers used by

MODFLOW-USG.

Next USGBUD2SMP prompts for the name of its principal output file:-

 Enter name for bore sample output file:

For each time step at which cell-by-cell flow term data was accumulated,

USGBUD2SMP calculates the total flow within each of the non-zero zones defined in

the integer zone definition list; however the zero-valued zone (if it exists) is ignored

as far as flow term accumulation is concerned. USGBUD2SMP records accumulated

flows to the user-nominated bore sample file. Within this file, one line is recorded for

each zone for each time for which flow data was recorded by MODFLOW-USG.

Next USGBUD2SMP asks:

 Enter flow rate factor:

A flow rate factor different from unity may be required to convert MODFLOW-USG

flow rates to more appropriate units. Flow rates recorded in the MODFLOW-USG

cell-by-cell flow term file employ the length and time units used by MODFLOW-

USG itself. Flow rates calculated for each MODFLOW-USG zone are multiplied by

the flow rate factor supplied above before being written to the bore sample file. The

MODFLOW-USG protocol of negative values representing model outflows and

positive values represent model inflows is respected in writing this file.

USGBUD2SMP 55

Flow rates can be referenced to the time pertaining to the beginning, middle or end of

the time step with which they are associated. USGBUD2SMP prompts the user for

his/her wish:-

 Assign flows to beginning, middle or finish of time step? [b/m/f]:

If the response to the above prompt is “f”, the time associated with each flow term

(i.e. the time written to each line of the bore sample file) will be the same as the time

of model output, this being the end of a particular model time step. However in some

instances a user may consider that flow rates should be plotted at a time

corresponding to the middle of the time step in which they are evaluated. This will

occur if “m” is supplied in response to the above prompt. By typing “b”, flow terms

can be ascribed to the beginning of pertinent MODFLOW-USG time steps.

USGBUD2SMP’s final prompt is:-

 Enter name for run record file:

Upon completion of execution USGBUD2SMP writes a record of every array

encountered in the MODFLOW-USG cell-by-cell flow term file which it has just

read. Part of such a file is shown below.

Part of a USGBUD2SMP run record file.

Uses of USGBUD2SMP

USGBUD2SMP can form part of a composite model run by PEST. The commands to

run individual model components are placed in a batch or script file. These will

include the command to run MODFLOW-USG; the commands to run

USGBUD2SMP (and probably SMP2SMP) will follow that. Recall that SMP2SMP

(documented elsewhere in this manual) generates a bore sample file in which model-

generated flows are time-interpolated to the dates and times of measured flows. If this

protocol is adopted, input file preparation for the PEST run in which flow terms

comprise part of a calibration dataset can be easily accomplished through use of

PESTPREP, PESTPREP1 or PESTPREP2 (all of which are documented herein).

 Stress_period Time_step Elapsed_time Flow_type Flow_processed_by_USGBUD2SMP

 1 5 31.000 STORAGE no

 1 5 31.000 CONSTANT HEAD no

 1 5 31.000 FLOW JA FACE no

 1 5 31.000 WELLS no

 1 5 31.000 DRAINS no

 1 5 31.000 RIVER LEAKAGE yes

 1 5 31.000 ET no

 1 5 31.000 RECHARGE no

 2 5 62.000 STORAGE no

 2 5 62.000 CONSTANT HEAD no

 2 5 62.000 FLOW JA FACE no

 2 5 62.000 WELLS no

 2 5 62.000 DRAINS no

 2 5 62.000 RIVER LEAKAGE yes

 2 5 62.000 ET no

 2 5 62.000 RECHARGE no

USGBUD2SMP 56

See Also

See also USGARRDET, USGARRDET_DBL USGBUD2SMP1, PESTPREP,

PESTPREP1, PESTPREP2, SMP2SMP and SMP2HYD.

USGBUD2SMP1 57

USGBUD2SMP1

Function of USGBUD2SMP1

USGBUD2SMP1 performs a similar role to USGBUD2SMP in that it reads a binary

cell-by-cell flow file written by MODFLOW-USG and records budget terms of

interest in bore sample file format. Data recorded in this format is amenable to further

processing by Groundwater Data Utility suite software. Interpolation to the times of

measured flows can be done using the SMP2SMP utility. Programs PESTPREP,

PESTPREP1 and PESTPREP2 can be used to prepare PEST input files in which

budget terms comprise part of the calibration dataset.

USGBUD2SMP1 can detect with a MODFLOW-USG budget file records data in

single or double precision. It adjusts its reading of the file accordingly.

Using USGBUD2SMP1

Bore-To-Budget File

USGBUD2SMP1 obtains specifications for extraction of budget terms from a “bore-

to-budget” file. It is the user’s responsibility to prepare this file prior to running

USGBUD2SMP1. An example of a bore-to-budget file follows.

Example of a bore-to-budget file

ch1 CONSTANT HEAD NODEGRP 5 4 0.75 12 &

 1.0 15 1.0 18 1.0 &

 &

 25 0.15

ch2 CONSTANT HEAD NODEGRP 5 14 0.75 32 1.0 85 1.0 78 1.0 95 0.25

ja_flow FLOW JA FACE NODEGRP 2 443 1.0 122 1.0

cc1 COMPOUND 2 ch1 ch2

cc2 COMPOUND 2 springck12 springck11

SpringCk12 RIVER LEAKAGE AUX CELLGRP 0

SpringCk11 RIVER LEAKAGE AUX CELLGRP 2

Example of a bore-to-budget file.

Each line (except for continuation lines – see below) of a bore-to-budget file begins

with a name, this being the name of a “flow target”. This name must be a maximum of

20 characters in length. This 20 character restriction is imposed in order to

accommodate the specifications of a bore sample file (see Part 1 of this manual)

whose task it is for USGBUD2SMP1 to write. Each such target name is transferred to

the bore sample file, along with pertinent flows extracted from the MODFLOW-USG

budget file for all output times found in the latter file. In the above example, flow

targets are named “ch1”, “ch2”, “ja_flow”, “cc1”, “cc2”, “SpringCk12” and

“SpringCk11”. Note that, along with all other content of a bore-to-budget file, these

names are case insensitive.

USGBUD2SMP1 58

Following the name of each flow target must be either the name of a MODFLOW-

USG flow type (“constant head”, “ja face”, “river leakage” in the above example), or

the “compound” specification. In the former case, the text characterizing the flow type

must exactly match corresponding text which appears in the headers to MODFLOW

unformatted budget records (including spaces between words); however, as stated

above, the case does not matter. (Note that text headers appearing in a budget file can

be listed to an ASCII file using the USGARRDET and USGARRDET_DBL utilities

documented herein.)

If the flow target is of “compound” type, then the flow associated with that target is

specified to be the sum of flows associated with other targets. Following the word

“compound” must be an integer (“2” in both of the above COMPOUND examples)

which specifies the number of target flows to be summed, followed by the names of

the targets whose flows are thus summed. Note that these latter targets cannot be

COMPOUND targets themselves (for this could lead to recursive summation).

Alternatively, if the string NODEGRP follows the flow type specification associated

with a certain target, then this indicates to USGBUD2SMP1 that a list of

MODFLOW-USG model nodes will be provided (or connections between nodes if JA

FACE flows are requested); flows into these nodes (or along these links) are summed

to compute the target flow. Following the flow type text must be an integer which

specifies the number of nodes (or links) for which flows are to be summed in

assigning a flow to the target. Suppose that this number it n (it is “5” and “2” in the

above example file). Then n pairs of numbers follow, the first of each pair being an

integer (a node or JA linkage number) and the second being a factor (a real number).

At each MODFLOW-USG output time, the flow assigned to the flow target will be

the sum of the flows pertaining to the cited nodes (or JA linkages), with each such

flow multiplied by the associated factor during the summation.

Alternatively, the string AUX CELLGRP can follow the name of the flow target type.

Use of this flow target specification protocol is predicated on the assumption that

auxiliary data is stored in the budget file along with the budget data itself; this can be

done for flow types such as those associated with DRAIN, RIVER, WELL and some

other boundary conditions. One of these auxiliary data types must be named

CELLGRP. Selection of which cells to include in the summed flow that is assigned to

the flow target is made on the basis of values assigned to the CELLGRP auxiliary

variable as it pertains to nodes listed in the budget file for that flow type. In the bore-

to-budget file, this “selection variable” must be an integer (and therefore acts as a kind

of zonation), despite the fact that auxiliary data is real in the MODFLOW-USG

budget file; USGBUD2SMP1 simply takes the nearest integer corresponding to each

CELLGRP value, and compares this with selection integers provided in the bore-to-

budget file. In the above example, a CELLGRP value of 0 causes flows to be assigned

to the “SpringCk12” flow target whereas a CELLGRP value of 2 selects flows for the

“SpringCk11” target.

Other salient features of the bore-to-budget file follow.

1. Blank lines and comment lines can be inserted between flow target

specification lines. Comment lines begin with the “#” character.

USGBUD2SMP1 59

2. Specifications for COMPOUND and NODEGRP flow targets can continue

onto subsequent lines. This is done by terminating an unfinished line with the

“@” character. However this character cannot be placed too early in the first

line of the flow target specification; it must be placed after the integer which

specifies the number of nodes or targets that follow. As many continuation

lines can be provided as is necessary to complete a flow target specification.

3. All parts of all flow target specification lines are case-insensitive.

4. The width of the bore-to-budget file must be 2000 characters or less.

Continuation lines can accommodate NODEGRP specifications which include

any number of cells.

It is worthy of note that the NODEGRP option can be slow where flows in many

nodes must be summed. This is because the matching of nodes in a NODEGRP list to

those in a list provided in the binary budget file requires many operations, especially

where no particular ordering is assumed in the NODEGRP list and where node

repetition is allowed. In this case zonation selection options provided by

USGBUD2SMP may be quicker.

Prompts and Responses

Typical USGBUD2SMP1 prompts and responses are as follows.

 Enter name of MFUSG unformatted budget output file: calib.ccf

 Enter maximum number of output times featured in this file: 100

 Enter name of bore-to-budget file: calib.b2b

 - file calib.b2b read ok.

 Enter simulation starting date [dd/mm/yyyy]: 1/1/2010

 Enter simulation starting time [hh:mm:ss]: 20.0

 Enter time units employed by model [y/d/h/m/s]: d

 Enter name for bore sample output file: model.smp

 Enter flow rate factor: 1.0

 Assign flows to beginning, middle or finish of time step? [b/m/f]: f

 Enter name for run record file: temp.rec

 - data for 1 model output times written to file model.smp

 - see file temp.rec for a record of arrays found in file calib.ccf

See documentation of USGBUD2SMP for a description of other aspects of

USGBUD2SMP1 usage.

Uses of USGBUD2SMP1

USGBUD2SMP1 can be run as a MODFLOW-USG postprocessor as part of a batch

file run by PEST as “the model”. Model-calculated flows corresponding to measured

flows which comprise part of a calibration dataset can thereby be extracted from a

MODFLOW-USG budget file. Interpolation to the times at which flow measurements

comprising the calibration dataset were made can be effected using the SMP2SMP

utility as a USGBUD2SMP1 postprocessor, provided that measured flows are also

stored in bore sample file format.

USGBUD2SMP1 60

Alternatively, USGBUD2SMP1 does not necessarily need to be employed as part of a

calibration process. It can be used simply to extract flows of interest from a

MODFLOW-USG budget file. The SMP2HYD utility can then be used to plot these

flows against time.

See Also

See also USGARRDET, USGARRDET_DBL USGBUD2SMP, MF6BUD2SMP,

PESTPREP, PESTPREP1, PESTPREP2, SMP2SMP and SMP2HYD.

USGDBL2SGL 61

USGDBL2SGL

Function of USGDBL2SGL

If MODFLOW-USG is compiled such that all variables are double precision, then the

numbers represented in its binary output files will be recorded as double precision

numbers. Such a file will not be readable by standard MODFLOW-USG post-

processors (such as those documented herein). USGDBL2SGL (“DBL2SGL” stands

for “double-to-single”) rewrites a binary MODFLOW-USG output file using the

single precision protocol so that normal MODFLOW-USG postprocessors can read it.

Using USGDBL2SGL

Typical USGDBL2SGL prompts and responses are as follows:

 Enter name of double precision unformatted MFUSG file: usg_coarse.cbb

 Is this a head/drawdown or cell-by-cell flow file? [h/c]: c

 Enter name for equivalent single precision file: temp.dat

USGDBL2SGL can read binary head/drawdown (including those pertaining to the

CLN package) and cell-by-cell flow term output files. However these must be written

for an unstructured grid model (i.e. a model for which node numbers, rather than row,

column and layer numbers, are used to identify cells.). The file written by

USGDBL2SGL will be immediately readable by programs such as USGARRDET

and other post-processing programs described herein.

Uses of USGDBL2SGL

For some models, a double precision version of MODFLOW-USG will run faster and

have better convergence properties than a single precision version. However binary

files produced by this version of MODFLOW-USG must be available for processing

by standard MODFLOW-USG postprocessors. The USGDBLE2SGL utility

undertakes the processing required to make this happen.

See Also

See also USGARRDET.

USGDUALMODEL 62

USGDUALMODEL

Function of USGDUALMODEL

USGDUALMODEL writes a rather complex data file named a “node association

file”. This file is not of direct use to a modeller. However it can be used by modelling

support software which performs rudimentary parameter upscaling between two

models – a coarse model and a fine model. The node association file provides

information on the spatial relationships between cells of the fine and coarse models.

Certain assumptions regarding the relationships between coarse and fine model cells

underpin use of USGDUALMODEL. These assumptions will almost certainly be met

where utility software, or a commercial MODFLOW-USG graphical user interface,

constructs a fine model from a coarse model through quadtree refinement of the latter,

or through construction of a nested grid over one or more subdomains of the overall

coarse model domain. These assumptions (many of which are checked by

USGDUALMODEL, but some of which are not) are as follows.

• All cells within both models are vertical rectangular prisms. Thus four of the

six faces of each cell are vertical. In horizontal cross section the remaining

two sides (i.e. the top and bottom faces of each cell) form a rectangle.

Verification that these conditions are met can be checked using the

USGORTHCHEK utility.)

• The overall domains of both models are the same.

• Some (or all) cells of the coarse model are subdivided into fine cells. While

the subdivision pattern can be arbitrary, all fine model cells must be

rectangular prisms, as stated above. The subdivision process must be such that

each fine model cell lies entirely within a single coarse model cell.

(USGDUALMODEL does not check this.)

• The two orthogonal directions in the XY plane defined by the vertical faces of

all cells must coincide for the coarse and fine models. Thus one model must

not be rotated with respect to the other. This is necessary (though not

sufficient) to prevent a fine model cell from overlapping two coarse model

cells. (USGDUALMODEL checks this condition.)

• The coarse model must have the same or fewer layers than the fine model.

Any one fine model layer must lie completely within the bounds of a coarse

model layer. Multiple fine model layers can replace a single coarse model

layer.

USGDUALMODEL 63

Using USGDUALMODEL

Prompts and Responses

USGDUALMODEL asks a lot of questions. As for other members of the

Groundwater Data Utility suite, if the response to any of these questions is “e” (for

“escape”), the user is taken back to the previous question.

USGDUALMODEL commences execution by prompting for the names of

unstructured grid specification files for the coarse and fine models. Its prompts are:

 Enter coarse model unstructured grid spec file:

 Enter fine model unstructured grid spec file:

After ensuring that the files are indeed present, USGDUALMODEL reminds the

reader of some of the assumptions under which it operates. It says:

 Both of these model grids must satisfy the following criteria:

 - each cell is a vertical prism with six faces

 - cell sides form rectangles in the XY plane (check with USGORTHCHEK)

 - fine model cells form a complete tile coverage of coarse model cells

 Are these criteria satisfied? [y/n]:

If the answer to this question is “y” USGDUALMODEL proceeds with its work under

the assumption that the user knows what he/she is doing. It begins by reading the first

part of each of the coarse and fine model grid specification files in order to establish

the dimensionality of these models. If it finds that the fine model has more layers than

the coarse model, it asks the user for the layering relationships between the two

models. Prompts are:

 The fine model has more layers than the coarse model.

 Layer correspondences must be provided.

 How many fine model layers in coarse model layer 1?

 How many fine model layers in coarse model layer 2?

 etc.

The above question is repeated for each coarse model layer. If, after all prompts have

been issued and responses provided, the number of fine model layers cited in these

responses does not add up to the total number of layers in the fine model grid as read

from the unstructured grid specification file, USGDUALMODEL repeats the above

series of prompts until the user gets it right. Note that if the number of layers in the

fine model is the same as that in the coarse model, the above prompts are not issued as

there is obviously a one-to-one relationship between fine and coarse model layers. If,

on the other hand, the coarse model is found to possess more layers than the fine

model, then USGDUALMODEL issues a terse error message and ceases execution.

Next USGDUALMODEL asks for the name of the file that it must write. Its prompt

is:

 Enter name for node association file:

Some programs which use this file may want to be informed of coarse and fine model

layer thicknesses on a cell-by-cell basis. So USGDUALMODEL asks:

 Include cell thickness data in this file? [y/n]:

USGDUALMODEL 64

If the answer is “y” it asks:

 Enter node data table file of coarse cell thicknesses:

 Enter node data table file of fine cell thicknesses:

The specifications of a node data table file are provided in Part A of this manual. This

file must have at least two columns of data, the first of which is labelled “NODE” or

“NODE_NUMBER”. In the present case, another column must be labelled

“THICKNESS”; USGDUALMODEL finds this column itself (or issue an error

message if it does not). A node data table file containing node thicknesses is easily

prepared in the following way:

1. Use the USGPROP2TAB1 or USGPROP2TAB2 programs to read the

MODFLOW-USG discretization file, extracting cell tops and bottoms in turn

from this file. These are recorded in node data table file format by these

programs.

2. Paste these columns into a spreadsheet such as EXCEL.

3. Subtract one from the other to calculate thickness on a cell-by-cell basis.

4. Export the thickness data (with or without the BOTTOM and TOP columns)

as a (tab-delimited) node data table file.

USGDUALMODEL will cease execution with an error message if any nodes are

omitted from either the coarse or fine model thickness node data table files. It will

forgive negative cell thicknesses however, assuming that these pertain to inactive cells

(USGDUALMODEL is not aware of the activity status of each cell); it upgrades

negative thicknesses to zero.

USGDUALMODEL then does its processing. It finds all fine model cells that are

contained within any coarse model cell. This can take a while, so patience may be

required. It then writes the node association file. The information contained within

this file should allow other programs to proceed with processing of dual model data

without the need to establish coarse/fine model cell associations, for this work has

been done for it by USGDUALMODEL.

Details of the node association file which USGDUALMODEL writes are now

presented.

The Node Association File

The node association file is divided into different sections. Each section is preceded

by a text header. The header begins with a “*” character (just like a PEST control

file). A seriously edited version of this file is shown below.

* coarse grid specifications

 35244 3

 11748 11748 11748

* fine grid specifications

 48972 9

 13156 1584 1584 13156 13156 1584 etc.

* coarse model node data

 1 1 10000.00 103.23

USGDUALMODEL 65

 2 1 10000.00 98.321

 3 1 10000.00 89.324

 etc.

* fine model node data

 1 1 10000.00 83.432

 2 1 10000.00 82.312

 3 1 10000.00 75.395

 etc.

* number of fine layers in each coarse layer

 3 1 5

* number of fine cells in each coarse cell

 1 1 1 1 1 etc.

 etc.

 1 1 1 1

* coarse-ordered fine cells array

 1 2 3 4 5 etc.

 etc.

* coarse cell in which each fine cell is situated

 1 2 3 4 5 etc.

 etc.

* coarse model nodal thicknesses

 309.6499 244.2447 305.0672 295.5038 etc.

 etc.

* fine model nodal thicknesses

 309.6499 244.2447 305.0672 295.5038 etc.

 etc.

Extract from a node association file written by USGDUALMODEL.

The contents of each section are now described.

* coarse grid specifications

The first line following the section header contains two numbers. These are the total

number of cells in the coarse model grid and the number of layers in the coarse model

grid respectively.

The next line provides the NODELAY array – the number of cells in each model

layer. There are as many entries in this array as there are layers in the model. The

array wraps over to the next line if the coarse model has many layers.

* fine grid specifications

The specifications for this section of the node association file are the same as those of

the preceding section; however entries pertain to the fine model instead of the coarse

model.

* coarse model node data

This section has as many lines as there are cells in the coarse model. Each line has

either three of four entries, depending on whether cell thickness data are requested.

The first entry is the node number; the second is the model layer to which each node

belongs; the third is the area of the cell to which the node belongs; the fourth

(optional) entry is the vertical thickness of the cell. Cell areas are evaluated from the

USGDUALMODEL 66

locations of cell vertices provided in the unstructured grid specification file for the

coarse model. Cell thicknesses are read from a node data table file as described above.

* fine model node data

The specifications for this section of the node association file are identical to those of

the preceding section; however data in this section pertains to the fine model rather

than to the coarse model.

* number of fine layers in each coarse layer

This section contains a single array of numbers. The array has as many entries as there

are layers in the coarse model. If necessary, the array wraps to the next line. As the

heading states, each entry is the number of fine layers that are contained within each

coarse model layer.

* number of fine cells within each coarse cell

A single array of numbers is provided, these wrapping onto successive lines as

needed. The array has as many elements as there are cells in the coarse model. Each

entry is the number of fine model cells that are contained within the respective coarse

model cell. Note that where there is more than one fine model layer within a coarse

model layer, then the cells that are contained within a coarse model cell are stacked

horizontally and vertically.

* coarse-ordered fine cells array

This array (which wraps onto as many lines as are required to hold it) contains as

many elements as there are cells in the fine model. This is the array which normally

takes the longest time to fill. It has as many elements as there are cells in the fine

model. Given a coarse model cell, it allows the user to quickly find the fine model

cells which are contained within that coarse cell. It is ordered such that the first N

elements list the N fine cells that are contained within coarse model cell number 1; the

next M elements list the M cells that are contained within coarse model cell number 2;

etc. Values for N, M etc. for each coarse model cell constitute the array that resides in

the “* number of fine cells in each coarse cell” section of the node association file.

* coarse cell in which each fine cell is situated

This array too has as many elements as there are cells in the fine model. For each cell

it simply states the cell number of the coarse model in which the pertinent fine model

cell is situated.

Uses of USGDUALMODEL

Through its “observation re-referencing” functionality, PEST allows calibration of a

complex model with one or more simple models used for calculation of derivatives.

This can result in large savings in overall inversion time, as by far the largest number

USGDUALMODEL 67

of model runs required for calibration of a model are those used for calculation of

derivatives.

Conceptually, MODFLOW-USG provides unique opportunities for harvesting the

benefits of dual model usage. The “real” model may possess a uniformly fine grid

throughout the entire model domain. Alternatively, it may possess a grid that is fine in

places of interest and coarse elsewhere; the grid for this model may have been

constructed through local nesting or quadtree refinement of a coarse model grid. In

either case the more detailed model may take much longer to run than the coarse

model, and may even suffer from convergence difficulties.

If pilot points are being used for parameterization of the model domain, these may

have been placed at many locations within many model layers. Where the sensitivity

of model outputs is being sought to a pilot point parameter which is not situated in a

fine part of the model grid, then the fine model can be replaced by a uniformly coarse-

gridded model for the pertinent sensitivity-calculation model run. Alternatively, where

a model is uniformly fine, a user may design a number of coarse-gridded models

which are locally fine in the vicinities of different groups of pilot points while being

elsewhere coarse. The partially fine models can then be run when calculating

sensitivities to pilot points within the various groups; the running of a partially fine-

gridded model may be far less computer intensive than the running of a uniformly

fine-gridded model for pilot point sensitivity calculations.

In all of these cases a means must exist for rapidly computing (an approximation to)

coarse model hydraulic properties from fine model hydraulic properties so that the

coarse model can be run in place of the fine model for derivatives calculation. Some

kind of (aerially-weighted and maybe thickness-weighted) averaging process may be

appropriate. (More complex upscaling procedures require information on cell

connectivity and not just location.) The software that performs upscaling-through-

averaging must be aware of the spatial relationships between fine and coarse model

cells. USGDUALMODEL provides this awareness.

See Also

See also USGORTHCHEK, USGPROP2TAB1 and USGPROP2TAB2.

USGGRIDLAY 68

USGGRIDLAY

Function of USGGRIDLAY

USGGRIDLAY reads an unstructured grid specification file. For a user-specified

layer in this file, USGGRIDLAY writes any or all of the following files:

• a MIF/MID file pair featuring cell vertices;

• a SURFER BLN file of cell vertices;

• an XYZ file of grid node locations and elevations.

The MIF/MID file can be imported into any GIS platform (such as the

MAPWINDOWS and QGIS public domain GIS packages). Within a GIS, a layer of

the grid can be displayed over other map data. Grid integer or nodal data can then be

assigned and edited prior to being exported from the GIS platform and used by the

model.

Use of USGGRIDLAY is predicated on the assumption that all MODFLOW-USG

model cells are vertical prisms (USGGRIDLAY verifies that this is the case). The

upper vertices of each cell are represented in the MIF and BLN files written by

USGGRIDLAY; because of the vertically prismatic nature of each cell, a set of lower

vertices lie vertically below these, and hence are not represented in these output files.

Node locations (the coordinates of which are supplied in the unstructured grid

specification file) are represented in the XYZ file.

Using USGGRIDLAY

As for any other program of the Groundwater Data Utilities suite, the user can

backtrack to the previous prompt by responding with “e” to the current prompt.

On commencement of execution, USGGRIDLAY prompts for the name of the

unstructured grid specification file which it must read. The user is then asked to

identify the grid layer for which information is to be recorded in USGGRIDLAY

output files. The prompts are:

 Enter name of unstructured grid specification file:

 Enter layer number of interest:

Next, USGGRIDLAY asks the user for the file types that he/she would like

USGGRIDLAY to write:

 Enter filename base for MIF/MID files (<Enter> if none):

 Enter filename base for BLN file (<Enter> if none):

 Enter name for nodal xyz file (<Enter> if none):

At least one of these must be requested; all of them can be requested if desired.

USGGRIDLAY 69

The user has the option of having all cells within the requested layer represented in

the output files written by USGGRIDLAY; alternatively he/she may request that some

of these cells be “filtered out”. This may be warranted if, for example, some of them

are inactive. Optionally a node data table file can be read in which information is

provided for each cell of a model grid. (See part A of this manual for a description of

this file type). The user selects the data column containing numbers which will be

used as a basis for omitting cells. He/she also selects a number. Every cell to which

this number is assigned in the identified column of the node data table file will be

omitted from all USGGRIDLAY output files. Prompts and some typical responses

follow. These responses assume that the node data table file is named grid.ndt and

that one of the columns in this file has a header “IBOUND”. Cells with an IBOUND

value of zero are omitted from representation in USGGRIDLAY output files.

 Filter output using column of node data table file? [y/n]: y

 Enter name of node data table file: grid.ndt

 Enter column header: ibound

 Does column contain integer or real data? [i/r]: i

 Enter value for node omission: 0

Note the following points pertaining to use of a node table data file for filtering out

model cells.

• The column header is case-insensitive. Thus the header in the node data table

file in the above example may be “IBOUND” or “ibound”.

• As is specified in Part A of this manual, the first column of a node data table

file must have the header “NODE” or “NODE_NUMBER”.

• It is not essential however that the node data table file which USGGRIDLAY

reads cites all cells within an unstructured model grid. Only those cells which

are identified for omission must be represented in this file.

Note also that re-importation of edited tables of node data into a MODFLOW-USG

model may be more difficult than it otherwise would be if this table has missing

elements.

Note the following points pertaining to USGGRIDLAY’s MIF/MID file functionality.

• No coordinate system or projection data is recorded in the MIF file. The GIS

which reads this file will therefore ask the user for the coordinate reference

system to which the data pertains.

• Three data columns are represented in the MIF/MID file pair. The first is the

node number (labelled “node_number”). The second and third columns are

labelled “int_val” and “real_val”. All data values for all nodes are set to zero

in these columns. The user can fill these columns with other data as he/she

sees fit, and re-import this altered data later into the model.

USGGRIDLAY 70

Uses of USGGRIDLAY

Files written by USGGRIDLAY allow a grid to be viewed on a map – both the cells

within the grid (each defined by its respective corner vertices), and the nodes of the

grid.

The MIF/MID files can be imported into any GIS wherein they can be converted

immediately into ESRI shapefile format if desired. (In many GIS platforms the latter

can be edited whereas the former cannot.) The integer and real data columns supplied

in the MIF and MID files can then be filled with data such as cell activity, boundary

condition locations, and/or a hydraulic properties – all against a map background.

Other data columns can be added if desired. Node-specific integer and real data thus

acquired can then be saved to a table and combined with data of the same type

pertaining to other layers. The data can then be assimilated into a MODFLOW-USG

model.

See Also

See also USG2VTK and USGNDTF2MIF.

USGMOD2ARRAY 71

USGMOD2ARRAY

Function of USGMOD2ARRAY

USGMOD2ARRAY performs a similar function to MOD2ARRAY; however it works

with a MODFLOW-USG input dataset rather than with a MODFLOW input dataset.

It reads a sequence of arrays of layer-specific node data from a MODFLOW-USG

input file; it then re-writes all of this data to a single file which can be read using

MODFLOW-USG’s “EXTERNAL” array-reading protocol. It alters the MODFLOW-

USG input data file so that MODFLOW-USG is directed to read the new external file.

It also alters the MODFLOW-USG name file so that MODFLOW-USG is instructed

to open the external file at the beginning of its execution.

The re-written data is recorded as a single column in the external file. This can be

easily turned into a “node data table file” (see part A of this manual for a description

of this file type) if desired; all that is required is a leading NODE_NUMBER column

and appropriate column headers (these can be added by cutting and pasting from other

files). Also, data in the external file can be easily read and written by the PLPROC

parameter list processor.

Using USGMOD2ARRAY

USGMOD2ARRAY commences execution by prompting for the name of the name

file pertaining to the MODFLOW-USG model of interest:

 Enter name of MODFLOW-USG name file:

USGMOD2ARRAY reads all data recorded in this file and stores it in its memory. It

then opens the DISU file that is cited in the name file (note that an unstructured grid is

thereby assumed). From the DISU file it obtains the number of nodes and layers in the

current model, as well as the distribution of nodes between model layers (from the

NODELAY array).

Next USGMOD2ARRAY prompts for the name of a MODFLOW-USG input file that

contains data for all layers of the model. This can be a DISU, BAS, BCF or LPF

package input file that is cited in the name file. The prompt is:

 Enter name of MFUSG BCF/LPF/BAS/DIS package input file:

USGMOD2ARRAY reads array data in a MODFLOW-USG input file in the same

way that the USGPROP2TAB2 utility does. It assumes that the standard

MODFLOW-USG layer-specific array header line is followed by text which includes

the array type (for example “kx”), and the layer to which the current subarray pertains

(for example “layer 2”). Note that:

• The same array type text identifier must be associated with instances of the

array pertaining to all model layers (“kx” in the above example);

USGMOD2ARRAY 72

• The string “layer” followed by the layer number must also be present in the

array identification text string for all model layers;

• Data for all model layers (and not just a subset of these layers) must be

provided in the MODFLOW-USG input file.

Array identification text such as the above is added by most commercial

MODFLOW-USG graphical user interfaces to the MODFLOW-USG data input files

which they write. USGMOD2ARRAY’s prompt is:

 Enter text string for array recognition in this file:

In the above example, only the string “kx” would be provided in response to this

prompt; the existence of the “layer” string is presumed. If the string by which the

array is recognized contains a space, it must be placed between quotes when

responding to this prompt.

MODFLOW-USG next asks whether the array data that it is required to read and re-

formulate is integer or real. The prompt is:

 Are these arrays integer or real? [i/r]:

It next asks for the names of the files which it must write:

 Enter name for external array data file:

 Enter name for new package input file:

 Enter name for new MFUSG name file:

The new name file cites the new MODFLOW-USG package input file and the

external array file containing the re-formulated array data. The new MODFLOW-

USG package input file no longer holds the user-specified array data. However, in

accordance with MODFLOW-USG protocol, a data header is retained in this file at all

locations where layer-specific node subarrays previously existed within it. This header

directs the MODFLOW-USG U1DREL or U1DINT subroutines to read the missing

data from the external data file.

Uses of USGMOD2ARRAY

If hydraulic property or other data lies in its own file, it can be processed much more

easily than if it resides in a file which it shares with other data. Thus this data can be

processed as part of a composite model which is run by PEST. Because the data

header that remains in the MODFLOW-USG package input file instructs

MODFLOW-USG to read this data using free-field format, a pre-processor is given a

high degree of latitude in how it writes this file. It can write it as a list confined to a

single column (as does USGMOD2ARRAY), or as a series of layer-specific arrays. If

it takes the latter option, data for each new MODFLOW-USG layer must begin on a

new line.

See Also

See also USGPROP2TAB1 and USGPROP2TAB2.

USGMOD2OBS 73

USGMOD2OBS

Function of USGMOD2OBS

USGMOD2OBS does for MODFLOW-USG what MOD2OBS does for MODFLOW.

It writes a bore sample file based on data recorded in a binary head/drawdown output

file produced by MODFLOW-USG. It is important to note, however, that

heads/drawdowns in this binary file must pertain to the nodes of a MODFLOW-USG

unstructured (rather than structured) grid. (Use MOD2OBS if the grid is structured.)

Despite their similarities there is a significant difference between USGMOD2OBS

and MOD2OBS. Factors used by USGMOD2OBS to interpolate from the

unstructured grid to measurement points must be supplied by the user. In contrast,

MOD2OBS calculates interpolation factors itself. (Calculation of interpolation factors

is, of course, a far easier task for a structured grid than for an unstructured grid.)

As is discussed in Part A of this manual, a bore sample file records measured or

calculated values at one or a number of sites, at one or many times for each site.

USGMOD2OBS requires that the user supply such a file; this user-supplied bore

sample file presumably records field-measured values at sites and times of interest.

USGMOD2OBS generates a new bore sample file in which model-calculated

heads/drawdowns are recorded at the same output times as in the user-supplied bore

sample file (as long as these times lie within the model simulation time). Interpolation

from times at which data is recorded in the MODFLOW-USG binary head/drawdown

file to the times featured in the user-supplied bore sample file is linear in time. Data

recorded in the USGMOD2OBS-produced bore sample file is thus the model-

generated counterpart of the user-supplied bore sample file.

Using USGMOD2OBS

As for many other members of the Groundwater Data Utilities suite, a settings file

named settings.fig must be present in the directory from which USGMOD2OBS is

run. See Part A of this manual for a description of this file type. This informs

USGMOD2OBS of the protocol which it must employ for reading and writing dates.

USGMOD2OBS commences execution with the prompt:

 Enter name of node-to-bore interpolation file:

The name of an appropriate file should be supplied in response to this prompt. If a

default filename for the node-to-bore interpolation file has been read from a filename

file (named files.fig) resident in the current directory, that filename will appear with

the above prompt. (The pertinent line of this file will say

“node_to_bore_interpolation_file = file”, where file is the name of the file; see Part A

of this manual.) It can be accepted through pressing the <Enter> key or rejected by

supplying the correct filename. Note that, as is the case for other members of the

Groundwater Data Utilities suite, responding to any prompt with “e” (for “escape”)

takes you back to the previous prompt. In this way mistakes can be quickly corrected.

USGMOD2OBS 74

The node-to-bore interpolation file contains, for each location (i.e. bore) to which

interpolation must take place, the node number(s) and corresponding factors through

which interpolation to the bore from nodes of the unstructured grid is implemented.

Nodal interpolation factors for each bore location must sum to unity; USGMOD2OBS

will generate an error message if this is not the case. For any given bore, node

associations can extend across MODFLOW-USG layers. Either groundwater flow or

CLN nodes may be cited, but not a mixture of both. Specification details for a node-

to-bore interpolation file are provided in Part A of this manual. An example node-to-

bore interpolation file follows.

419001A 1 28435 1.000

419003B 3 31985 0.425 11986 0.250 22286 0.325

A381 4 123 0.340 133 0.260 99 0.300 1005 0.100

 Part of a node-to-bore interpolation file.

On any given run, it is not necessary that USGMOD2OBS undertake interpolation to

all bores cited in a node-to-bore interpolation factor file. The user can select which

bores will be involved in the interpolation process by providing the name of a bore

listing file in response to the prompt:

 Enter name of bore listing file:

Each bore cited in the bore listing file must also be cited in the node-to-bore

interpolation file. If desired, the bore listing file can also be the node-to-bore

interpolation file. If this is the case, then all bores cited in the node-to-bore

interpolation file will also be cited in the bore sample file generated by

USGMOD2OBS.

USGMOD2OBS next asks whether the interpolation factors provided in the node-to-

bore interpolation file refer to groundwater flow (GWF) or connected linear network

(CLN) nodes used in the MODFLOW-USG model:

Are the interpolation factors associated with GWF or CLN nodes [g/c]?

The response to this prompt should be “g” if nodes cited in the node-to-bore

interpolation file are groundwater flow (GWF) nodes, or “c” if they are connected

linear network (CLN) nodes. Note that the CLN process has its own separate

numbering scheme in MODFLOW-USG input and output files (even though

internally to MODFLOW-USG CLN node numbers are appended to the end of the

GWF node number list). The unique number for each CLN node is given by the IFNO

variable (which starts from 1) on the CLN package input file. (These may be

connected to GWF nodes designated through the IGWNOD variable. Refer

MODFLOW-USG documentation for further details.)

If a node goes dry in a MODFLOW-USG simulation it is assigned an easily-identified

value (i.e. HDRY) which denotes this condition. This should be a very high value (see

prompt below). If a dry node is used for interpolation to one or more bores, this

situation must be properly accommodated. USGMOD2OBS provides two options.

One is denote any bore whose interpolated value is influenced by this node as itself

dry. In this case USGMOD2OBS provides a value of “dry_or_inactive” for the

bore’s interpolated value. The other option is to re-calculate interpolation factors such

USGMOD2OBS 75

that the dry node is omitted and the remaining interpolation factors sum to 1.0. The

user chooses between these two options through his/her response to the following

prompt:

 Reapportion interpolation factors if any dry/inactive nodes [y/n]?

A response of “n” invokes the first of the above options whereas a response of “y”

invokes the second. If all nodes from which interpolation takes place to a particular

bore are dry, a value of “dry_or_inactive” is assigned to the bore regardless of

which of these options is chosen.

Next USGMOD2OBS requests the name of an existing bore sample file, this

presumably containing observed heads or drawdowns at observation wells. (Recall

that it is the task of USGMOD2OBS to calculate the modelled counterparts to these.)

 Enter name of bore sample file:

If the name a bore sample file appears in a filename file (named files.fig) which is

stored in the current working directory, that name will appear as a default in the above

prompt; it can be accepted by simply pressing the <Enter> key.

While the bore sample file whose name is supplied in response to the above prompt

can contain data pertaining to more bores than those listed in the bore listing file, and

record sample values over a time interval exceeding the model simulation time, it is a

good idea to reduce the amount of redundant information present in that file to a

minimum, as this will lower USGMOD2OBS memory usage and processing time.

As already stated, USGMOD2OBS undertakes spatial interpolation of model results

to the locations of bores cited within the user-supplied bore sample file (and bore

listing file), as well as temporal interpolation to the times at which samples were taken

for each such bore. In doing this, USGMOD2OBS computes a model-generated

“sample” corresponding to each measured “sample” in the user-supplied bore sample

file. The set of such samples is recorded in bore sample file format.

Next, USGMOD2OBS prompts for the name of the binary MODFLOW-USG

head/drawdown file which it must read:

 Enter name of unformatted MFUSG-generated file:

It is the user’s responsibility to ensure that MODFLOW-USG stores enough data in

this file to allow accurate temporal interpolation to sample times listed in the user-

supplied bore sample file. For times which do not correspond to model output times,

USGMOD2OBS performs linear interpolation between times pertaining to arrays

present in the MODFLOW-USG binary head/drawdown file. Through the setting of

appropriate MODFLOW-USG Output Control variables, the user should ensure that

binary output is available at close enough time intervals for linear interpolation to be

reasonably accurate.

Should the user inadvertently specify a binary MODFLOW-USG output file that

pertains to a structured rather than an unstructured grid, USGMOD2OBS will cease

execution with an appropriate error message. (The MOD2OBS utility should be used

USGMOD2OBS 76

in this case.) An error message will also be issued if node numbers are cited in the

node-to-bore interpolation file which do not appear in the binary head/drawdown file.

It is the user’s responsibility to ensure compatibility between grid specifications and

node interpolation factors in other, less detectable, ways. (To promote ease of use,

USGMOD2OBS does not read the DISU file for the current model, so other

incompatibilities may go unnoticed if the user supplies an incorrect node-to-bore

interpolation file, or if the binary head/drawdown file pertains to a different model.)

USGMOD2OBS needs to know the “threshold value” above which a cell is

considered to be inactive or dry. If the absolute value of any nodal head or drawdown

provided in the binary head/drawdown file exceeds this value, USGMOD2OBS

presumes that the cell is dry or inactive. The treatment of dry and/or inactive cells is

discussed above.

 Enter inactive threshold value for numbers in this file:

USGMOD2OBS then asks a series of questions, the answers to which will allow it to

calculate the date and time corresponding to each model output time. (Model output

times are recorded in array headers in the binary head/drawdown file.)

 Enter time units used by model (yr/day/hr/min/sec) [y/d/h/m/s]:

 Enter simulation starting date [dd/mm/yyyy]:

 Enter simulation starting time [hh:mm:ss]:

(Note that the date format used by USGMOD2OBS in these prompts depends on the

contents of file settings.fig situated within the current directory. If this file is not

present, USGMOD2OBS will not run.)

USGMOD2OBS then prompts:-

If a sample time does not lie between model output times, or if there

is only one model output time, value at the sample time can equal

that at nearest model output time:-

Enter extrapolation limit in days (fractional if necessary):

If a sample from a particular bore lies either before the first time of model output, or

after the last time of model output, USGMOD2OBS cannot perform linear

interpolation from model output times to the bore sample time. Hence it will calculate

an “extrapolated” value at that time equal to the first or last model-calculated value

respectively for that bore. However, there is a limit to the time over which such

extrapolation can take place; this is set by the user’s response to the above prompt.

Note that the earliest time at which MODFLOW-USG output is available is the end of

the first time step. Hence if you require model output at a time as close as possible to

the beginning of the simulation, make this first time step as short as possible.

Next USGMOD2OBS requests the name of the bore sample file which it must write:-

 Enter name for bore sample output file:

USGMOD2OBS next carries out temporal and spatial interpolation to the sites and

times cited in the user-provided bore sample file. It then produces a bore sample file

USGMOD2OBS 77

of its own, with samples at exactly the same dates and times as those occurring within

the user-provided bore sample file, but with model-generated numbers substituted for

measured ones. It is important to note, however, that there may not be a sample in the

USGMOD2OBS-generated bore sample file corresponding to every sample in the

user-provided bore sample file. USGMOD2OBS does not generate a sample for a

particular bore and time under the following conditions:-

• if a user-supplied sample precedes the earliest time of model output by an

amount exceeding the extrapolation limit;

• if a user-supplied sample postdates the latest time of model output by an

amount exceeding the extrapolation limit;

• if a bore appears in the bore sample file but not in the bore listing file.

As has already been discussed, interpolation to the site of a bore cannot take place if

the bore is associated with one or more nodes that are deemed to be dry or inactive on

the basis of the inactive/dry threshold specified by the user, and either (a)

reapportionment of node-to-bore interpolation factors is not undertaken or (b) all

nodes required for interpolation to the site of the bore are dry or inactive. Under such

circumstances the value “dry_or_inactive” is assigned to the head/drawdown

associated with that bore. Hence if a bore becomes dry during a PEST run in which

USGMOD2OBS forms part of a composite model, the same instruction set can read

the USGMOD2OBS-generated bore sample file as there will be no difference in the

number of lines appearing in this file. However if the instruction set includes an

instruction to read this dry/inactive head value an error condition will arise. PEST

may then cease execution with an error message. If this is the case the resulting PEST

error message will be such as to direct the user to the source of the problem.

Alternatively, if the PEST LAMFORGIVE and/or DERFORGIVE variables are set,

PEST will take the remedial actions specified in PEST documentation.

Uses of USGMOD2OBS

USGMOD2OBS was written to expedite use of PEST in calibration of a

MODFLOW-USG model. A comparison between observed borehole data and its

model-generated counterparts is easily achieved by running MODFLOW-USG

followed by USGMOD2OBS as a composite model. Because USGMOD2OBS

performs both spatial and temporal interpolation to the sites and times of measured

data, and presents the results of its calculations in the same format as the measured

data (i.e. as a bore sample file), comparison between the two datasets can be made

with ease. When used in conjunction with PEST, USGMOD2OBS forms a vital

component of the model calibration process. The PESTPREP, PESTPREP1 and

PESTPREP2 utilities documented herein can be used to automate generation of an

instruction file for reading of a USGMOD2OBS-generated bore sample file, and for

writing of the “observation data” segment of a PEST control file.

USGMOD2OBS is just as useful in steady-state MODFLOW-USG calibration as it is

in transient calibration. However in this case there will normally be only one “time” at

which model output is available, this being equal to the notional “elapsed time” since

USGMOD2OBS 78

the beginning of the steady state simulation (this being defined in the MODFLOW-

USG input dataset). In this case USGMOD2OBS cannot interpolate between

neighbouring MODFLOW-USG output times to the time of a borehole head or

drawdown measurement. Instead it can conduct only spatial interpolation to sample

sites, assuming temporal coincidence of borehole sample times with model output

times. In this case the user should ensure that the measurement bore sample file

contains steady-state samples which all pertain to a date and time which is close to the

notional model output time (i.e. within the use-specified temporal extrapolation limit).

This is a simple matter if it can be assumed that steady-state conditions prevail on a

certain date. Beware, however, of making the user-supplied extrapolation time too

large, for then neighbouring samples in the user-supplied bore sample file may be

close enough to the notional model output time to warrant inclusion in the

USGMOD2OBS-generated bore sample file. If this occurs you must either decrease

the extrapolation time, or assign duplicated observations a weight of zero.

Alternatively, provide only one “measured” head/drawdown for each bore in the user-

supplied bore sample file and set the USGMOD2OBS temporal extrapolation limit to

a very high value in order to ensure that all sample times represented in this file are

covered. (The latter is the recommended option.)

See Also

See also MOD2OBS, USGMOD2SMP, PESTPREP, PESTPREP1 and PESTPREP2.

USGMOD2OBS1 79

USGMOD2OBS1

USGMOD2OBS1 behaves in an almost identical fashion to USGMOD2OBS. The

only differences between these programs are the following.

1. Instead of asking for a threshold value through which dry or inactive cells are

defined, USGMOD2OBS1 asks specifically for values which denote inactive

cells (MODFLOW-USG variable HNOFLO) and those which denote dry cells

(MODFLOW-USG variable HDRY).

2. When USGMOD2OBS1 reads the header to the first array contained within

the MODFLOW-USG binary output file, it assumes that values which don’t

make sense indicate that the file was actually written by a double precision

version of MODFLOW-USG. It then adjusts its behaviour to read such a file.

If the values that it reads still don’t make sense, then it terminates execution

with an error message.

USGMOD2SMP 80

USGMOD2SMP

Function of USGMOD2SMP

USGMOD2SMP does for MODFLOW-USG what MOD2SMP does for MODFLOW.

It reads a binary head/drawdown output file generated by MODFLOW-USG for an

unstructured grid and writes a bore sample file containing heads/drawdowns spatially

interpolated to the sites of user-supplied bores. Spatial interpolation takes place for all

simulation times featured in the MODFLOW-USG binary head/drawdown file.

Despite their similarities, there is an important difference between the interpolation

functionality provided by USGMOD2SMP and that provided by MOD2SMP.

USGMOD2SMP employs a user-supplied set of node-to-bore interpolation factors

whereas MOD2SMP calculates interpolation factors itself. (Calculation of

interpolation factors is much easier for a structured grid than for an unstructured grid.)

Many programs documented in this manual are able to manipulate data contained in a

bore sample file. A USGMOD2SMP output file is immediately available for

processing by these programs.

Using USGMOD2SMP

Program USGMOD2SMP will not run unless a settings file (named settings.fig) is

present within the directory from which it is invoked. As discussed in Part A of this

manual, a settings file determines the manner in which dates are read and written by

programs of the Groundwater Data Utilities suite.

USGMOD2SMP commences execution with the prompt:

 Enter name of node-to-bore interpolation file:

The name of the appropriate file should be provided in response to this prompt. If a

default filename for the node-to-bore interpolation file has been read from a filename

file (name files.fig) resident in the current directory, that filename will appear with the

above prompt. (The pertinent line of this file will say

“node_to_bore_interpolation_file = file”, where file is the name of the file; see Part A

of this manual.) It can be accepted through pressing the <Enter> key or rejected by

supplying the correct filename. Note that, as is the case for other members of the

Groundwater Data Utilities suite, responding to any prompt with “e” (for “escape”)

takes the user back to the previous prompt. In this way mistakes can be quickly

corrected.

As discussed in Part A of this manual, a node-to-bore interpolation file contains the

node number(s) and corresponding nodal interpolation factor(s) for each user-supplied

bore of interest. Nodal interpolation factors for each bore location must sum to unity.

For a given bore location, node associations can extend across multiple MODFLOW-

USG layers. Nodes may pertain to either the groundwater flow (GWF) process or

USGMOD2SMP 81

connected linear network (CLN) process of MODFLOW-USG, but not to a mixture of

both of these.

An example node-to-bore interpolation file follows. See Part A of this manual for

further details. Note that an error message will be issued if illegal node numbers (i.e.

zero or negative) are cited in the node-to-bore interpolation file or if the nodal

interpolation factors for a bore do not sum to unity.

419001A 1 28435 1.000

419003B 3 31985 0.425 11986 0.250 22286 0.325

A381 4 123 0.340 133 0.260 99 0.300 1005 0.100

Part of a node-to-bore interpolation file.

The user is able to select which of the bores cited in the node-to-bore interpolation file

will appear in the final USGMOD2SMP output file by providing the name of a bore

listing file in response to the prompt:

 Enter name of bore listing file:

Each bore cited in the bore listing file should also be cited in the node-to-bore

interpolation file. If desired, the bore listing file can also be the node-to-bore

interpolation file; thus all bores cited in the node-to-bore interpolation file will take

part in the spatial interpolation process.

USGMOD2SMP next asks whether the interpolation factors provided in the node-to-

bore interpolation file refer to groundwater flow (GWF) or connected linear network

(CLN) nodes in the MODFLOW-USG model:

Are the interpolation factors associated with GWF or CLN nodes [g/c]?

The response to this prompt should be “g” if nodes cited in the node-to-bore

interpolation file are groundwater flow (GWF) nodes, or “c” if they are connected

linear network (CLN) nodes. Note that the CLN process employs its own separate

numbering scheme on MODFLOW-USG input/output files (even though internally to

MODFLOW-USG CLN node numbers are appended to the end of the GWF node

number list). The unique number for each CLN node is given by the IFNO variable

(which starts at 1) on the CLN package input file. (These may be connected to GWF

nodes designated through the IGWNOD variable. Refer to MODFLOW-USG

documentation for further details.)

When carrying out spatial interpolation to a specific bore location from MODFLOW-

USG nodes using interpolation factors supplied in the node-to-bore interpolation file,

two options are available to address the situation whereby dry or inactive conditions

are encountered at one or more of these nodes. The first option is to set the

interpolated value for the bore to 1.1e35 if any node associated with the spatial

interpolation process pertaining to that bore is itself dry or inactive. Alternatively,

USGMOD2SMP can automatically reapportion user-supplied interpolation factors for

those nodes that remain active and wet after omission of the offending dry/inactive

nodes from the interpolation process. The adjusted interpolation factors sum to 1.0

while retaining their original ratios. USGMOD2SMP requires that the user select

which of these options to take:

USGMOD2SMP 82

 Reapportion interpolation factors if any dry/inactive nodes [y/n]?

USGMOD2SMP next prompts the user for the name of the MODFLOW-USG binary

head/drawdown file which it must read:

 Enter name of unformatted MFUSG-generated file:

Should the user inadvertently specify a head/drawdown file that is associated with a

structured rather than an unstructured grid, USGMOD2SMP will cease execution with

an appropriate error message. An error message will also be issued if node numbers

are cited in the node-to-bore interpolation file which never appear in the binary

head/drawdown file. It is the user’s responsibility to ensure compatibility between

grid specifications and node interpolation factors in other, less detectable, ways. (To

promote ease of use, USGMOD2OBS does not read the DISU file for the current

model so other incompatibilities may go unnoticed.)

USGMOD2SMP next asks:

 How many different output times are represented in this file?

USGMOD2SMP needs to know the number of different output times so that it can

dimension arrays appropriately before reading the MODFLOW-USG-generated

binary head/drawdown file. If you are unsure of the contents of an unformatted

MODFLOW-USG output file, use program USGARRDET to echo array headers

found in this file. Alternatively, in response to the above prompt, supply a number that

you are sure is greater than the number of output times represented in the

head/drawdown file; if this number is not large enough USGMOD2SMP will soon

inform you.

In order that it detect the presence of dry or inactive cells and, if necessary, readjust

interpolation factors in the manner described above, USGMOD2SMP next prompts:

 Enter blanking threshold value for arrays in this file:

Provide a positive number that is less than the absolute values of the user-supplied

MODFLOW-USG variables HDRY and HNOFLO.

Before it can generate a bore sample file, USGMOD2SMP needs to know how to

convert elapsed model simulation times to true dates and times. So it asks:

 Enter time units used by model (yr/day/hr/min/sec) [y/d/h/m/s]:

 Enter simulation starting date [dd/mm/yyyy]:

 Enter simulation starting time [hh:mm:ss]:

(Note that the date format used in the second of the above prompts depends on the

contents of the settings file settings.fig.) Then, after prompting:

 Enter name for bore sample output file:

USGMOD2SMP reads the unstructured MODFLOW-USG binary head/drawdown

output file and undertakes spatial interpolation to the sites of all bores listed in the

bore listing file in the manner described above. The outcomes of this interpolation

USGMOD2SMP 83

process are recorded in bore sample file format to the file whose name is provided in

response to the above prompt.

Uses of USGMOD2SMP

Because it performs the dual functions of interpolating model results to bore locations,

and writing its results in bore sample file format, USGMOD2SMP makes model-

generated data “look like” field data. Members of the Groundwater Data Utilities suite

which process bore sample files are thus able to process model outcomes. In particular

SMP2HYD can be used to construct data files that can be used by commercial

plotting software for the plotting of borehole hydrographs. These hydrographs can be

plotted on the same graphs as measured borehole hydrographs, thus enabling a

comparison to be made between model-generated data and field data. Program

SMP2SMP can be used to interpolate model-generated heads/drawdowns to the times

at which measurements were taken of these quantities. Combined use of

USGMOD2SMP and SMP2SMP thus emulates use of USGMOD2OBS. Programs

PESTPREP, PESTPREP1 and PESTPREP2 can then be used to facilitate construction

of a PEST input dataset.

See Also

See also SMP2SMP, USGARRDET, USGBUD2SMP and USGMOD2OBS.

USGNDTF2MIF 84

USGNDTF2MIF

Function of USGNDTF2MIF

“NDTF” stands for “node data table file”. As is explained in Part A of this manual,

this type of file associates one or more items of integer or real data with each node of

a finite difference grid. This data is arranged in tabular form.

USGNDTF2MIF reads a node data table file. It also reads an unstructured grid

specification file in order to obtain information on grid geometry. It writes a

MIF/MID file pair which contains data from both of these sources pertaining to a

user-specified model layer. These files can be readily imported into a geographical

information system (GIS) for spatial analysis or editing in a map context. Using

functionality available through these platforms, this same model data can be re-

written using other common GIS protocols, for example using the popular ESRI shape

file. Alternatively (or as well), node data that is edited in the GIS can simply be

exported in tabular form, whereby it is easily re-formatted using a text editor, ready

for use by MODFLOW-USG.

Using USGNDTF2MIF

USGNDTF2MIF commences execution by prompting for the name of the

unstructured grid specification file which it must read.

 Enter name of unstructured grid specification file:

 Enter layer number of interest:

Next it prompts for the name of a node data table file:

 Enter name of node data table file:

As is explained in Part A of this manual, the first column of a node data table file

must be labelled “NODE” or NODE_NUMBER”. USGNDTF2MIF checks that this is

indeed the case. If it is not, USGNDTF2MIF reports the error and ceases execution. If

this is the only column that the node data table file contains then USG2NDTF will ask

no more questions about this file; only node numbers will be recorded in the

MIF/MID files which it writes. Alternatively, if there are other columns in the file,

then USGNDTF2MIF next asks:

 The following columns have been detected in the node data table file.

 Indicate whether you would like pertinent data transferred to MIF/MID file.

 Data in column labelled “IBOUND”? [y/n]:

 Does column contain integer or real data? [i/r]:

 Use data from this column to filter cell output? [y/n]:

 Data in column labelled "Kx"? [y/n]:

 Does column contain integer or real data? [i/r]:

 Use data from this column to filter cell output? [y/n]:

 etc.

USGNDTF2MIF 85

Note that if the response to the first of any of the above trio of prompts is “n” then the

second and third questions will not be asked. Note also that, as for any prompts issued

by any of the members of the Groundwater Data Utilities suite, a response of “e”

allows backtracking to the previous prompt.

If the answer to the third of the above trio of prompts is “y” then USGNDTF2MIF

asks either of the following questions, the first if the column contains integer data and

the second if the column contains real data. The questions are:

 Enter value for no cell output:

or:

 Enter abs(threshold) above which there is no cell output:

If the data is integer, and if the data value for a particular cell corresponds to the user-

supplied value for no cell output, then that cell will not appear in the MIF/MID files

written by USGNDTF2MIF. This provides a useful means of, for example, filtering

out cells whose IBOUND value is zero. If the data is real, then cell filtering takes

place if the absolute value of data pertaining to a cell is greater than the value of the

user-supplied threshold. This can also provide a means of filtering out inactive cells,

for the heads assigned to such cells by MODFLOW-USG are often values which are

easily recognized by virtue of being excessively high or excessively negative. Often

only one data column will be used for filtering. However if multiple columns are so

designated, then the data value in any of the columns can cause removal of that cell

from the MIF/MID file pair written by USGNDTF2MIF.

USGNDTF2MIF prompts for the filename base of the MIF/MID file pair which it

must write:

 Enter filename base for MIF/MID files:

An extension of “.mid” is appended to this filename base to formulate the name of the

MIF file, while an extension of “.mid” is appended to formulate the name of the MID

file. USGNDTF2MIF then writes the MIF and MID files and ceases execution.

It should be noted that if any node cited in the unstructured grid specification file for

the model layer of interest is not cited in the node data table file, then

USGNDTF2MIF detects this omission and ceases execution with an appropriate error

message.

USGNDTF2MIF’s final prompt may seem a little strange at first. (It is probably the

reason that you are actually reading this manual.) It is:

Enter a suitable value for epsilon (<Enter> if 1E-3):

There are a number of processes within the USGNDTF2MIF algorithm which require

it to determine whether two points (for example cell centres or vertices) have the same

easting and northing. Two points may indeed have the same easting or northing, but

the numbers which represent these eastings and northings in the computer may not be

equal; alternatively, cell vertices at exactly the same horizontal location may be given

slightly different east and north coordinates by the program that wrote the

USGNDTF2MIF 86

unstructured grid specification file if calculation of vertex locations was complex.

Hence tolerance must be allowed. Epsilon is that tolerance. Sometimes a broad

tolerance should be provided. For example if the smallest grid cell size is 10m × 10m,

then a tolerance of 1m will allow rather large errors in cell vertex calculations. In

most cases however, a much smaller tolerance (e.g. 10-3m) is fine; this is the default.

Uses of USGNDTF2MIF

As stated above, it is anticipated that the primary use of USGNDTF2MIF will be as a

facilitator of node data editing in the GIS context. Most GIS packages (including the

popular MAPWINDOWS and QGIS public domain packages) import MIF/MID files.

They also allow export of the data held within these files in other commonly used

formats. (Note that spatial data editing in some GIS packages can be faster if the data

is imported as a shape file.)

Once model data has been edited against a map background, or assigned using GIS

spatial functions, it can be exported. If node data is exported as single, layer-specific

columns this data is easily readable by MODFLOW-USG. Alternatively it can be

processed for importation into MODFLOW-USG (or other packages/models) using

other protocols.

Note that cell filtering should not take place if data editing (rather than simply data

display) is to take place in a GIS, for this will make re-importation of edited data into

a MODFLOW-USG dataset harder because of the missing cells.

See Also

See also USGGRIDLAY, USG2VTK.

USGORTHCHEK 87

USGORTHCHEK

Function of USGORTHCHEK

The “ORTH” in USGORTHCHEK stands for “orthogonal”. USGORTHCHEK reads

an unstructured grid specification file. It visits all model cells within a user-specified

layer of this file. It checks that each cell is a vertical prism and that each cell is a

rectangle in plan view. This is established by verifying that each of its corners is a

right angle in plan view.

Using USGORTHCHEK

Typical USGORTHCHEK prompts and responses are as follows.

 Enter name of unstructured grid specification file: qt2.gsf

 Enter layer number of interest: 3

 Enter name for report file: temp.rec

 - file qt2.gsf read ok.

 - file temp.rec written ok.

 Maximum cell internal direction cosine = 1.21211E-08

 Cell at which this occurs = 2936

 Maximum number of cell vertices = 4

Part of a report file is shown below.

NODE_NUMBER NUMBER_OF_VERTICES DIRN_COSINES_AT_VERTICES--->

 2533 4 7.57493E-10 7.57493E-10 7.57493E-10 etc.

 2534 4 7.57493E-10 7.57493E-10 7.57493E-10 etc.

 2535 4 7.57626E-10 7.57626E-10 7.57626E-10 etc.

 2536 4 7.57493E-10 7.57493E-10 7.57493E-10 etc.

 2537 4 7.57493E-10 7.57493E-10 7.57493E-10 etc.

 2538 4 7.57537E-10 7.57537E-10 7.57537E-10 etc.

 2539 4 7.57670E-10 7.57670E-10 7.57670E-10 etc.

 2540 4 7.57493E-10 7.57493E-10 7.57493E-10 etc.

 etc.

Part of a USGORTHCHEK report file.

If orthogonality prevails then all direction cosines should be very low. They may not

be exactly zero due to round-off error. Note that the arrangement of vertices on any

one line of a report file is the same as their arrangement in files generated by

USGGRIDLAY and USGNDTF2MIF.

Uses of USGORTHCHEK

An unstructured grid may have cells of different sizes, but may still be comprised of

rectangular cells. This will occur, for example, if it is built from a regular grid through

quadtree refinement of the latter. Certain types of model pre- and post-processing can

be simplified if a rectangular cell structure prevails.

USGORTHCHEK 88

See Also

See also USGGRIDLAY and USGNDTF2MIF.

USGPROP2TAB1 89

USGPROP2TAB1

Function of USGPROP2TAB1

USGPROP2TAB1 stands for “USG-properties-to-table-option-1”. It reads a

MODFLOW-USG input file which contains hydraulic properties or integer values for

cells within the finite-difference grid. In many cases this will be the input file for a

package such as LPF or BASIC. It reads all arrays in which cell properties of a certain

type are listed (for example arrays of layer-specific horizontal hydraulic conductivity

or IBOUND). It writes all such properties in a single table, ordered according to node.

This table can then be read by programs such as USG2VTK for three-dimensional

visualization of hydraulic property data.

Using USGPROP2TAB1

In a file such as the MODFLOW-USG LPF package input file, hydraulic properties

such as specific yield and storativity are normally found in a number of arrays, each

pertaining to a different layer of the model grid. Where the grid is unstructured, the

number of elements in each of these arrays may be different, as an unstructured grid

does not need to possess the same number of elements in each of its layers. For a

particular property type, USGPROP2TAB1 reads all of these arrays. It then writes an

output file which contains two columns, each of which begins with a header. The first

contains node numbers (numbered from 1 to the number of nodes in the grid). The

second contains elements read from these arrays.

USGPROP2TAB1 can read integer arrays as well as real arrays. Hence if it reads the

BASIC package input file for a MODFLOW-USG model, it is able to write a table of

nodal IBOUND values.

Correct operation of USGPROP2TAB1 relies on a number of assumptions. However

these assumptions are often met in practice. The first of these assumptions is that the

program which wrote the MODFLOW-USG input file has included a text specifier for

each array on the same line as the array header. Arrays are generally read by the

MODFLOW-USG U2DREL (for real numbers) or U2DINT (for integers)

subroutines. Use of these subroutines requires that array headers follow a certain

protocol. This protocol does not require that the following array be named. However

many MODFLOW graphical user interfaces write their own text descriptor following

the standard U2DREL or U2DINT header. This supplementary header may be

something like “HK array for layer 3”, or “IBOUND array for layer 1”. Use of

USGPROP2TAB1 depends on the existence of this text descriptor.

USGPROP2TAB1 also assumes that the array begins on the line immediately

following the header. Thus if the CONSTANT or OPEN/CLOSE protocol is

employed for storage of the array on the MODFLOW-USG input file,

USGPROP2TAB1 will not operate correctly. It will report an error message instead.

USGPROP2TAB1 is “dumb” in the sense that it knows nothing about the construction

of the model grid. The only knowledge that it possesses is of the total number of cells

USGPROP2TAB1 90

in the grid; it obtains this information from the user. It does not know the number of

cells within each layer of the MODFLOW-USG grid. It obtains this information as it

operates.

When USGPROP2TAB1 finds the user-specified array designator text string on any

line of a MODFLOW-USG input file, it assumes that a layer-specific array begins on

the next line. It reads numbers from that and subsequent lines until one of the

following things happens:

1. A line contains a character string that cannot be read as a number.

2. The end of the file is encountered.

If it encounters either of these conditions it assumes that it has tried to read a line too

far, and ends its collection of element values for the particular layer at the previous

line. It is very important to note that, for this process to work, numbers in arrays must

be separated from each other by a space; hence array elements must be readable using

free-field formatting.

Once it has reached the end of a layer specific “partial array” in this manner,

USGPROP2TAB1 then continues scanning the MODFLOW-USG input file looking

for further occurrences of the user-designated string. If it finds another occurrence it

repeats the above procedure, assuming that the next array designated by the same text

header belongs to the following layer. It appends the nodal property values that it

reads from this next layer-specific array to the end of the list of values that it has

already read.

Hopefully, when this process is complete, USGPROP2TAB1 will have read a value

for every node in the grid. If it finds more values than nodes, it informs the user of

this. It also informs the user if it finds fewer array values than nodes; in the latter case

the remainder of the array is filled with user-specified default values.

Typical USGPROP2TAB1 prompts and responses are as follows:

 Enter name of MODFLOW-USG model input file: umodel.lpf

 Enter text string for array recognition in this file: hk

 Are these arrays integer or real? [i/r]: r

 Enter total number of nodes in grid/network: 10092

 Enter name for node data table file: hk.dat

 Enter value to assign to uncited nodes: 1.1e32

The text string used to inform USGPROP2TAB1 that a layer-specific partial property

array follows must provide unique identification of these arrays. It must occur

nowhere else within the MODFLOW-USG input file except in headers to arrays

which are of this type. Optionally, this text string can be surrounded in quotes when

responding to the above prompt.

Note that USGPROP2TAB1 can also read a CLN package input file. In that case the

number of nodes supplied by the user must pertain to the CLN network rather than to

the MODFLOW-USG grid.

USGPROP2TAB1 91

Uses of USGPROP2TAB1

Despite some of the restrictive assumptions embodied in its design, use of

USGPROP2TAB1 provides a means of quickly re-formatting model property and

integer data in a way that is immediately available for the use of programs such as

USG2VTK. Unlike programs such as USGPROP2TAB2, its use does not require that

the user have knowledge of the number of nodes in each model layer.

See Also

See also USGPROP2TAB2 and USG2VTK.

USGPROP2TAB2 92

USGPROP2TAB2

Function of USGPROP2TAB2

USGPROP2TAB2 performs a similar role to USGPROP2TAB1 in that it reads a

series of layer-specific integer or real arrays from a MODFLOW-USG input file and

records the contents of these arrays as a single collective table. However it uses

slightly different protocols for the reading of array data from those used by

USGPROP2TAB1. In particular, it reads these arrays in the same way as

MODFLOW-USG does, gaining the information to do this from the header to each

array. Through keywords such as CONSTANT, INTERNAL and OPEN/CLOSE,

together with accompanying format specifiers and multipliers, many different options

for the recording of array data are available. USGPROP2TAB2 understands the above

keywords, and can read corresponding arrays accordingly.

The table recorded by USGPROP2TAB2 in its output file includes a column of node

layer numbers, in addition to array data read from MODFLOW-USG input files.

Using USGPROP2TAB2

USGPROP2TAB2 commences execution with the prompt:

 Enter name of MODFLOW-USG nodes-in-layer file:

A nodes-in-layer file is described in Part A of this manual. It records the number of

nodes within each layer of an unstructured MODFLOW-USG grid. USGPROP2TAB2

requires this information so that when the CONSTANT keyword is provided in a

layer-specific array header, it knows how many array elements the constant value

pertains to.

USGPROP2TAB2’s next prompt is:

 Enter name of MODFLOW-USG model input file:

This may be, for example, an LPF input file, a DISU file or a BASIC package input

file. It is assumed that the file contains a series of arrays, with each such array

providing information for all elements within a single layer of the grid. Properties of

more than one type may be represented in different series of arrays, all residing within

the one MODFLOW-USG input file.

In a MODFLOW-USG input file, each array is preceded by a header. This instructs

MODFLOW-USG how to read the array. USGPROP2TAB2 expects the first item on

any such header line to be CONSTANT, INTERNAL or OPEN/CLOSE. See

MODFLOW-USG documentation for the meanings of these keywords, and for the

data input protocols which they signify.

Despite the fact that it is not standard MODFLOW protocol, USGPROP2TAB2

expects the MODFLOW array header to be supplemented with extra header data.

Many MODFLOW graphical user interfaces write this supplementary header so that

USGPROP2TAB2 93

the user can know the nature of the data that each array contains. For example, the

normal MODFLOW header may be followed by text such as “HK array for layer 2”.

USGPROP2TAB2 requires this extra header information so that it, too, can identify

arrays of interest. It reads only those arrays to which it is directed by the user. These

arrays are identified through a character string contained within the supplementary

header that is unique to each such augmented header.

USGPROP2TAB2 prompts:

 Enter text string for array recognition in this file:

Suppose the user responds to this prompt with “hk”. The response is case-insensitive;

quotes are nonessential unless the string contains a space. Following this user-

supplied response, USGPROP2TAB2 scans the MODFLOW-USG input file until it

finds the string “hk” on a line of this file. It will assume that it has thereby found an

array header line and will process it as such, looking for the strings CONSTANT,

INTERNAL or OPEN/CLOSE at the start of the line. Before it does this however it

looks for the string “layer” on the same line as “hk”. It then looks for an integer

immediately following the “layer” string and reads it as the layer number. Having

acquainted itself with the layer number to which the ensuing array pertains it then

knows how many elements it must read from that array, or to how many array

elements it must assign a CONSTANT value. If the string “layer” and an ensuing

integer are not found on this line, USGPROP2TAB2 terminates execution with an

appropriate error message.

Next USGPROP2TAB2 asks:

 Are these arrays integer or real? [i/r]:

It requires this information for obvious reasons. USGPROP2TAB2’s final prompts

are:

 Enter name for node data table file:

 Enter value to assign to uncited nodes:

If there are fewer arrays pertaining to the requested property type in the MODFLOW-

USG input file than there are layers in the model grid (as read from the node-in-layer

file), USGPROP2TAB2 fills in missing elements in its output table with the number

provided in response to the second of the above prompts.

Uses of USGPROP2TAB2

Data in tables written by USGPROP2TAB2 are recorded in node order. These tables

can then be read by USG2VTK so that layer property data can be included in a VTK

file and then displayed.

USG2VTK can read a file containing many property data columns. USGPROP2TAB2

writes only one column of property data however. Hence multiple USGPROP2TAB2

runs are required to list node data for multiple property types. Columns in different

USGPROP2TAB2-generated files can easily be placed into a single multi-column file

using text editors that allow column cutting and pasting. Microsoft EXCEL could also

be used for this purpose.

USGPROP2TAB2 94

See Also

See also USGPROP2TAB1 and USG2VTK.

USGPTINGRID 95

USGPTINGRID

Function of USGPTINGRID

USGPTINGRID (“PTINGRID” stands for “point in grid”) reads a bore coordinates

file. This file assigns a character identifier, (x,y) coordinates, and a model layer

number to each of a series of points. See Part A of this manual for full specifications

of this file type. USGPTINGRID also reads an unstructured grid specification file. It

then locates each point within the unstructured grid; it does this by calculating the cell

number (equivalent to the node number) in which each point lies. Optionally it also

reads a node data table file which assigns values to cell nodes; see Part A of this

manual for specifications of this type of file. If so, the output file written by

USGPTINGRID contains, as well as the node number associated with each point, the

value assigned to that node in the node data table file.

Using USGPTINGRID

Like many of the utilities that are written to support use of MODFLOW-USG,

USGPTINGRID commences execution by prompting for the name of an unstructured

grid specification file. The prompt is:

 Enter name of unstructured grid specification file:

Next it prompts for the name of a bore coordinates file. If the response to this, or any

other prompt, is “e”, the user is taken back to the preceding prompt. USGPTINGRID

asks:

 Enter name of bore coordinates file:

Next it asks for the name of a bore listing file. This contains just a single list of bore

identifiers; see Part A of this manual for details. This file performs a similar role to

that which it performs for many other Groundwater Data Utilities, in that it acts as a

filter for points recorded in the bore coordinates file; only those bores which are

featured in the listing file are subject to further processing. If a bore is cited in the

listing file but not in the bore coordinates file, an error condition arises;

USGPTINGRID then ceases execution with an appropriate error message.

USGPTINGRID’s next prompt is:

 Read column of a node data table file? [y/n]:

If the answer is “n” then USGPTINGRID will record in its output file only the cell in

which each point cited in the bore listing file lies. However if the response is “y”, then

USGPTINGRID prompts for the name of a node data table file, and the column of this

file from which it must obtain node data; columns are identified though their headers.

It also asks whether the data comprising the column is integer or real. The prompts

are:

 Enter name of node data table file:

 Enter column header:

USGPTINGRID 96

 Does column contain integer or real data? [i/r]: r

Finally USGPTINGRID prompts for the name of the file which it must write. It asks:

 Enter name for output file:

The USGPTINGRID output file contains up to six columns of data. The first four of

these echo data read from the bore coordinates file. They contain, respectively, bore

identifiers, eastings, northings and layer numbers. The next column contains the node

which occupies the cell in which each bore lies. If a node data table file is read, then a

further column is recorded in the USGPTINGRID output file. This contains the real or

integer values associated with cells within which bores lie as read from the user-

specified column of the node data table file.

Note that if a point in the bore coordinates file does not lie within the grid, and/or if a

value for the cell in which a point lies is not supplied in the node data table file,

appropriate text indicating this condition is recorded in the appropriate place in the

USGPTINGRID output file.

Uses of USGPTINGRID

The most obvious use of USGPTINGRID is to indicate where, in an unstructured grid,

a pumping or observation well lies. In the former case, knowledge of this is essential

for construction of an appropriate well (or CLN) input data file. In the latter case a

model-generated node data table file (written perhaps by USGBIN2TAB_H) can be

read to obtain model-generated heads or drawdowns for the cells in which observation

wells lie.

See Also

See also USGBIN2TAB_H and USGGRIDLAY.

USGQUADFAC 97

USGQUADFAC

Function of USGQUADFAC

“QUADFAC” stands for “interpolation factors for a qaudtree-refined grid”.

USGQUADFAC generates these factors for the use of programs USGMOD2OBS and

USGMOD2SMP. In those parts of the model domain where the grid is uniform (or if

the grid is entirely uniform), interpolation is bilinear – this being the same as that

undertaken by the MOD2OBS and MOD2SMP utilities from nodes of a structured

grid. However this interpolation scheme is modified in areas of transition between

different grid cell spatial densities. As is discussed below, interpolation may take

place from three model nodes to the site of a well rather than from four model nodes

at certain places within the model domain in order to maintain lateral continuity of the

interpolation process along any transect through the model domain.

USGQUADFAC requires that the following conditions be met by the unstructured

model grid.

1. The unstructured grid must be rectilinear. That is, the boundaries of all model

cells must point in either of two directions, these directions being at right

angles to each other. This condition can be checked using the

USGORTHCHEK utility.

2. One model cell must not connect to any more than two cells across a model

cell boundary.

USGQUADFAC also requires that the unstructured grid specification file which it

reads specify that each model cell have eight vertices, with four pertaining to the

upper boundary of the cell and four pertaining to the lower cell boundary. In plan

view each of these groups of four vertices must define a rectangle. In practice, it is not

impossible that one of these upper and lower rectangles is represented by more than

four vertices. For example a vertex may be introduced to the midpoint of the side of a

rectangle to accommodate the fact that the cell abuts two smaller cells along that side.

This allows the upper surface of the larger cell to match those of its neighbours along

the join between them if the upper/lower surfaces of the smaller cells represent steep

topography more faithfully. USGQUADFAC does not accommodate this situation; if

this is a problem, please consult the author and the code will be amended to

accommodate this situation.

Using USGQUADFAC

General

As stated above, where possible, interpolation factors calculated by USGQUADFAC

implement bilinear interpolation from the four cell centres that surround a user-

supplied interpolation point (normally an observation well). Where the grid is locally

structured, these cell centres define a rectangle. In parts of the grid where cell density

is transitional, these four points form a quadrilateral whose sides are not parallel. In

USGQUADFAC 98

some transitional areas interpolation takes place from only three cell centres in a way

that maintains lateral continuity as the interpolation point is displaced. See the figure

below.

No
interpolation

USGQUADFAC 99

No
interpolation

In each of the above sub-figures cell centres are represented by crosses. The

point to which interpolation takes place is represented by a red dot. Red circles

denote cell centres from which bilinear interpolation takes place to that point.

Interpolation will not take place to a point that is not “surrounded” by at least three

model cell centres. Such points are omitted from the interpolation factor file which is

written by USGQUADFAC; a warning of this condition is written to the screen.

Prompts and Responses

As for all other members of the Groundwater Data Utility suite, you can backtrack to

a previous prompt by responding to the current prompt with “e” (for “escape”).

USGQUADFAC commences execution with the prompt:

 Enter name of unstructured grid specification file:

USGQUADFAC 100

USGQUADFAC obtains the coordinates of all model cell centres and vertices from

this file. As stated above, it will cease execution with an appropriate error message if

other than eight vertices are ascribed to any model cell.

It then asks:

 Are grid cell boundaries N-S and E-W? [y/n]:

If the boundaries of all model cells are aligned in either the E-W or N-S directions,

then respond to this prompt with “y”. However if you respond with “n”

USGQUADFAC asks for the angle of rotation of the grid. Its prompt is:

 Enter rotation (anticlockwise) of grid:

Provide a number between -90 degrees and 90 degrees. The rotation angle is

illustrated in the figure below.

θ

θ is the grid rotation angle.

Conceptually, USGQUADFAC could determine the grid rotation angle itself. But the

programming is easier if the user supplies the rotation angle. In subsequent processing

USGQUADFAC checks for cell rectilinearity. It also rotates the grid (and borehole

coordinates) so that it can work in a coordinate system in which the model grid is

oriented in an E-W / N-S direction. If violations of this condition are detected in the

rotated grid it reports this condition to the user and ceases execution.

USGQUADFAC next asks:

 Enter name of unstructured MODFLOW-USG discretization file:

The MODFLOW-USG discretization file is normally written by the graphical user

interface which was used to build the model. USGQUADFAC reads the IAC and JA

arrays from this file so that it is completely informed of cell connectivity.

Next USGQUADFAC asks:

 Enter name of bore coordinates file:

 Enter name of bore listing file:

USGQUADFAC 101

As for other members of the Groundwater Data Utility suite, the bore listing file is

used to select a subset of bores from the bore coordinates file for processing. If

desired the bore listing file can be the same as the bore coordinates file. Interpolation

factors are calculated for all bores listed in the bore listing file.

Next USGQUADFAC prompts for the name of the file that it must write. This file

contains bilinear interpolation factors. It is readable by the USGMOD2OBS and

USGMOD2SMP utilities. The prompt is:

 Enter name for node-to-bore interpolation file:

USGQUADFAC’s final prompt may seem a little strange at first. (It is probably the

reason that you are actually reading this manual.) It is:

 Enter a suitable value for epsilon:

There are a number of processes within the USGQUADFAC algorithm which require

it to determine whether two points (for example cell centres or vertices) have the same

easting or northing (possibly after rotation of the grid to introduce N-W / E-W grid

cell edge alignment). Two points may indeed have the same easting or northing, but

the numbers which represent these eastings and northings in the computer may not be

equal, especially if those numbers are the outcomes of re-orientation calculations

undertaken by USGQUADFAC or the program that wrote the unstructured grid

specification file in the first place. Hence tolerance must be allowed. Epsilon is that

tolerance. A broad tolerance is suggested. For example if the smallest grid cell size is

10m × 10m, then a tolerance of 1m is suggested, through a much smaller tolerance

(e.g. 10-3m) would probably be fine.

USGQUADFAC then performs its calculations, recording its progress to the screen. If

the MODFLOW-USG grid is large and many wells are featured in the bore

coordinates file, then these calculations may take a while. So a little patience may be

required.

Uses of USGQUADFAC

The primary purpose of USGQUADFAC is to provide the means by which

USGMOD2SMP and USGMOD2OBS can calculate heads and drawdowns at well

locations though interpolation of these quantities from a MODFLOW-USG grid. The

MODFLOW-USG grid can be regular, or quadtree refined.

Note that interpolation factors calculated by USGQUADFAC take no account of the

active/inactive status of cells from which interpolation may take place to an

observation well. Flexibility of grid design in MODFLOW-USG allows for

elimination of inactive cells; if an observation well lies in such a cell (which is

therefore outside the grid), no interpolation factors are calculated for that cell.

However where an inactive cell is represented in a MODFLOW-USG grid, then

interpolation factors may include that cell as USGQUADFAC is not aware of its

active/inactive status. However, as is documented herein, USGMOD2SMP and

USGMOD2OBS can recognize the inactive status of that cell through the values of

USGQUADFAC 102

heads or drawdowns that are associated with it. They can adjust USGQUADFAC-

calculated interpolation factors accordingly.

See Also

See also USGORTHCHEK, USGMOD2SMP and USGMOD2OBS.

