

PLPROC
An example

A GMDSI tutorial

by John Doherty and Rui Hugman

PUBLISHED BY
The National Centre for Groundwater Research and Training
C/O Flinders University
GPO Box 2100
Adelaide SA 5001
+61 8 8201 2193

DISCLAIMER
The National Centre for Groundwater Research and Training, Flinders University advises that the information in

this publication comprises general statements based on scientific research. The reader is advised and needs to be

aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions

must therefore be made on that information without seeking prior expert professional, scientific and technical

advice.

PREFACE
The Groundwater Modelling Decision Support Initiative (GMDSI) is an industry-funded and

industry-aligned project focused on improving the role that groundwater modelling plays in

supporting environmental management and decision-making.

Over the life of the project, GMDSI will produce a suite of tutorials. These are intended to

assist modellers in setting up and using model-partner software in ways that support the

decision-support imperatives of data assimilation and uncertainty quantification. Not only will

they focus on software usage details. They will also suggest ways in which the ideas behind

the software which they demonstrate can be put into practice in everyday, real-world modelling

practice.

GMDSI tutorials are designed to be modular and independent of each other. Each tutorial

addresses its own specific modelling topic. Hence there is no need to work through them in a

pre-ordained sequence. That being said, they also complement each other. Many employ

variations of the same synthetic case and are based on the same simulator (MODFLOW 6).

Utility software from the PEST suite is used extensively to assist in model parameterization,

objective function definition and general PEST/PEST++ setup. Some tutorials focus on the

use of PEST and PEST++, while others focus on ancillary issues such as introducing transient

recharge to a groundwater model and visualization of a model’s grid, parameterization, and

calculated states.

The authors of GMDSI tutorials do not claim that the workflows and methodologies that are

described in these tutorials comprise the best approach to decision-support modelling. Their

desire is to introduce modellers, and those who are interested in modelling, to concepts and

tools that can improve the role that simulation plays in decision-support. Meanwhile, the

workflows attempt to demonstrate the innovative and practical use of widely available, public

domain and commonly used software in ways that do not require extensive modelling

experience nor an extensive modelling skillset. However, users who are adept at programming

can readily extend the workflows for more creative deployment in their own modelling contexts.

We thank and acknowledge our collaborators, and GMDSI project funders, for making these

tutorials possible.

Rui Hugman

John Doherty

CONTENTS
 Introduction .. 5

 Some Basics .. 6

 MODFLOW-USG Grid Specification File ... 6

 Node Data Table File .. 6

 Using PARAVIEW for Display ... 7

 A Closer Look at Model Zonation .. 9

 PLPROC .. 11

 Reading Model Grid Specifications ... 11

 Pilot Points .. 12

 Interpolation from Pilot Points to Model Grid Nodes .. 13

 Evaluating Vertical Hydraulic Conductivities.. 14

 Writing Model Input Files... 15

 Displaying in PARAVIEW ... 16

 Hydraulic Property Data .. 16

 Adding Pilot Points to the Picture .. 17

5

 INTRODUCTION
“PLPROC” stands for “Parameter List PROCessor”. PLPROC is designed to facilitate calibration of

large numerical models by serving as a model-independent pre-processor for such models. Through

a combination of:

• bulk manipulation of parameters contained in user-defined parameter lists;

• assignment of values to members of one list based on values of non-congruent lists;

• an ability to read parameter values from files that employ a number of different formats; and

• an ability to write parameter values to model input files of arbitrary construction using

template files that include embedded functions;

PLPROC allows a modeller to create and manipulate parameters that inform hydraulic properties that

are represented in a numerical model. In doing this, PLPROC supports PEST in facilitating model-

based decision-support which enshrines the principle that a model should encapsulate what we know

while quantifying what we do not.

The current document and accompanying files offer a gentle introduction to PLPROC. They

demonstrate the use of PLPROC in parameterization of a MODFLOW-USG model with multiple zones

and layers. This demonstration does not comprise a comprehensive review of all functionality

available in PLPROC. Nor does it illustrate the most recent additions to PLPROC functionality.

Nevertheless, it should illuminate the basics of PLPROC usage. At the same time, it provides a reader

with some insights into how to configure PLPROC for use in his/her own modelling context.

The current tutorial departs from the style of other GMDSI tutorials. All necessary files are provided

ready-made. Explanations of files, and descriptions of workflows, are provided in the current

document. By following instructions provided herein, a reader can run several utilities to regenerate

these files and visualise model outputs. The present tutorial employs a MODFLOW-USG model. Other

GMDSI tutorials are based on variations of a MODFLOW 6 model. Some of these tutorials also

address the use of PLPROC. PLPROC workflows are similar, regardless of model type.

As well as PLPROC, this tutorial demonstrates several other utilities from the PEST Groundwater

Utilities Suite. These include USG2VTK, USGADDZCOORD, USGGRIDLAY and USGPROP2TAB1.

Executable versions of all programs belonging to the PEST Groundwater Utilities Suite can be

downloaded from the PEST web site. However, to make this tutorial easy, executable versions of

programs that are needed for its completion are provided in the tutorial folder itself. See

documentation of the PEST Groundwater Utilities Suite for full descriptions of their use. Before

commencing the tutorial, make sure that executable versions of these programs are copied to your

machine (these are the “*.exe” files). Ideally, they should be stored in a folder that is cited in your

computer’s PATH environment variable. Alternatively, they can simply be copied to your working

folder.

To make full use of this tutorial the reader should have PARAVIEW (or a similar 3D visualisation

package) installed. PARAVIEW is open source and freely available through the world wide web. The

present tutorial demonstrates the use of utilities that enable visualisation of properties and system

states associated with a MODFLOW-USG model. Similar utilities that work with MODFLOW 6 models

are demonstrated in other GMDSI tutorials.

https://pesthomepage.org/groundwater-utilities
https://www.paraview.org/

6

 SOME BASICS

 MODFLOW-USG Grid Specification File
File example.gsf is a “grid specification file” for MODFLOW-USG. This is not an official USGS file;

however, it is written by graphical user interfaces such as Groundwater Vistas which support both

MODFLOW-USG and PEST. Standard MODFLOW-USG input files feature no real-world coordinates.

Furthermore, it is generally not possible to even know the shape of a MODFLOW-USG grid by reading

the contents of a MODFLOW-USG DISU file.

A MODFLOW-USG grid specification file provides the coordinates not only of grid nodes (in the

second part of the file), but also of grid cell vertices (in the first part of the file). Vertex coordinates are

required for plotting of the grid, and for other tasks such as particle tracking and interpolation from

node locations (where heads are calculated) to the locations of observation wells. If you inspect file

example.gsf using a text editor, you will find that the first number on the second line of this file is

“91644”. This is the number of nodes in the model grid.

example.disu is a MODFLOW-USG discretization file for the same model. It is not very interesting,

and we will not be using it. However, you can inspect this file if it interests you. If you do, you will find

the number “91644” again as the first entry on its first line.

 Node Data Table File
Inspect file example.bas. This is the BASIC package input file for our MODFLOW-USG model. The

model has 4 layers. IBOUND values are provided for these 4 layers. Our first task will be to extract

IBOUND values for all model cells and record these values in a “node data table file”. Files of this

type are employed by a number of members of the PEST Groundwater Utilities Suite. A node data

table file lists nodes in its first column; one or more values are ascribed to all of these nodes in

subsequent columns. We will now build a node data table file in which an IBOUND value (which in

this case is either 1 or 0) is assigned to each node.

Run program USGPROP2TAB1 from the PEST Groundwater Utilities Suite, responding to its prompts

as follows.

 Enter name of MODFLOW-USG model input file: example.bas

 Enter text string for array recognition in this file: ibound

 Are these arrays integer or real? [i/r]: i

 Enter total number of nodes in grid/network: 91644

 Enter name for node data table file: ibound.ndt

 Enter value to assign to uncited nodes: 0

Inspect file ibound.ndt. It is readily apparent that model node numbers are listed in the first column of

this file, while node IBOUND values are listed in its second column.

Now inspect file zones.ndt. This is also a node data table file. However, in this case the integers in

the second column are either 0 or a number between 3 and 10; a value of 0, once again, indicates an

inactive cell. Positive values are zone values. This file could be written in the manner described above

if IBOUND values are also zone numbers; thus, you could specify zonation for a model grid using

your normal MODFLOW-USG graphical user interface. Alternatively, you could assign zone numbers

to other arrays (integer or real) linked to the MODFLOW-USG model within that interface, and then

have the interface write these arrays to a standard MODFLOW-USG input file. They could then be

7

extracted from that file using the USGPROP2TAB1 utility in the manner described above.

Alternatively, the USGPROP2TAB2 utility could be used to perform this task.

Inspect file ibound_zones.ndt. This is also a node data table file. However, this file features both

IBOUND and zonation columns. ibound_zones.ndt is easily constructed from ibound.ndt and

zones.ndt through cutting and pasting using a text editor that supports block editing. (Most good

editors do this.) ibound_zones.ndt also contains a final column in which layer numbers are ascribed

to nodes. (This column can be pasted from the second part of the grid specification file example.gsf.)

Layer numbers will shortly come in handy for viewing nodes pertaining to individual layers in

PARAVIEW.

 Using PARAVIEW for Display
PARAVIEW is a powerful public domain visualization utility. It can read many types of file to obtain

the information which it plots, including a so-called “legacy vtk” file. We will use the USG2VTK utility

from the PEST Groundwater Utilities Suite to write such a file. Note that this program is useable only

where a MODFLOW-USG model has rectangular cells. (As we shall see shortly, the model grid which

is the subject of the present tutorial is quadpatch-refined in areas of interest; nevertheless, all cells

are still rectangular.) However, if a MODFLOW-USG model had been built using a package such as

ALGOMESH which employs polygonal cells instead of rectangular cells, then USG2VTK1 should be

used instead of USG2VTK for building a legacy VTK file.

Run USG2VTK, responding to its prompts as follows.

 Enter name of MODFLOW-USG grid or CLN specification file: example.gsf

 Enter name for VTK output file: example.vtk

 Record scalar data in VTK file? [y/n]: y

 Enter name of tabular file from which to read node data: ibound_zones.ndt

 Enter column number of data to read (<Enter> if no more): 2

 Is this integer or real data? [i/r]: i

 Enter column number of data to read (<Enter> if no more): 3

 Is this integer or real data? [i/r]: i

 Enter column number of data to read (<Enter> if no more): 4

 Is this integer or real data? [i/r]: i

 Enter column number of data to read (<Enter> if no more): <Enter>

Now, if you have PARAVIEW installed on your computer, read file example.vtk and produce a display

like the one shown in Figure 1. (The vertical exaggeration is 20. Cell selection is for IBOUND greater

than zero, and colouring is according to zone.)

8

Figure 1. The model visualized in PARAVIEW.

Other programs provided with the Groundwater Utilities allow you to display a model in platforms other

than PARAVIEW. USGNDTF2MIF allows you to write MIF/MID files that can be imported into a GIS.

So does USGGRIDLAY. The latter program also allows you to write BLN files that can be readily

imported into SURFER. We will do this now, writing a BLN file which depicts active cells in layer 4.

Run USGGRIDLAY, responding to its prompts as follows.

 Enter name of unstructured grid specification file: example.gsf

 Enter layer number of interest: 4

 Enter filename base for MIF/MID files (<Enter> if none): <Enter>

 Enter filename base for BLN file (<Enter> if none): example.bln

 Enter name for nodal xyz file (<Enter> if none): nodes.dat

 Filter output using column of node data table file? [y/n]: y

 Enter name of node data table file: ibound_zones.ndt

 Enter column header: ibound

 Does column contain integer or real data? [i/r]: i

 Enter value for node omission: 0

9

When running the above program, we also write a file named nodes.dat which lists all active nodes

in layer 4 together with their x, y and z coordinates. Have a look at this file if you are interested. If you

have SURFER installed on your computer, start it up and import file example.bln. Figure 2 shows

what you will see. As is apparent from the above series of prompts, BLN file construction could have

been based on individual zones rather than on the whole model grid in any layer of interest. SURFER

could then have been used to display cells in individual zones.

Figure 2. Model grid in layer 4 displayed by SURFER.

 A Closer Look at Model Zonation
Figures 3a-d show the model, looking from the west, as displayed by PARAVIEW. In part (b) of this

figure layer 1 is removed; in part (c) layers 1 and 2 are removed, while in part (d) layers 1 to 3 are

removed. Cells are coloured according to zone. It is apparent that some zones occur in multiple model

layers while some are restricted to an individual layer. Shortly we will parameterize the model using

pilot points. These will be assigned to zones, not layers. The fact that zones are not layer-specific

needs to be accommodated when interpolating from pilot points to the MODFLOW-USG grid.

10

Figure 3. Top row left: layers 1 to 4. Top row right; layers 2 to 4. Bottom row left: layers 3 and 4; bottom row right:

layer 4. Colouring is by zone.

In what follows, we will demonstrate PLPROC by using it to parameterize zones 3 and 5 of the model.

Zone 3 is the deep blue-coloured zone that occupies the entirety of layer 4. Zone 5 is the light blue

coloured zone that occupies the bottom of the river channel in layer 3.

11

 PLPROC

 Reading Model Grid Specifications
We will start slowly.

Inspect file plproc1.in. PLPROC undertakes complex tasks using a series of function calls. In a

PLPROC input file comments begin with the “#” character. These lines are not executed; they are

only used for explanation. The character “&” at the end of a line indicates continuation of that line to

the next line.

The first thing we will do is read the MODFLOW-USG grid specification file example.gsf. In reading

this file, PLPROC creates a CLIST named cl_m (for “CLIST model”). Once it has constructed this

CLIST, PLPROC knows the x, y and z coordinates of every node of the MODFLOW-USG grid. At the

same time, it creates a cl_m-dependent SLIST named layer (node layer numbers are listed in the

second part of the MODFLOW-USG grid specification file). So PLPROC also knows the layer to which

each node of the MODFLOW-USG grid belongs. However, in the present script it does not use this

information.

Here is the function call.

cl_m = read_mf_usg_grid_specs(file=example.gsf, slist=layer)

A MODFLOW-USG grid specification file does not specify zonation, as this is unrelated to grid

geometry; different zonations can be used on different occasions. To obtain the zonation used as a

basis for hydraulic property assignment in the present case, PLPROC reads the ibound_zones.ndt

node data table file which was discussed above. As is apparent from the second function call

appearing in file plproc1.in (shown below), PLPROC reads zone numbers from the third column of

this file and assigns them to an SLIST named zone. The parent CLIST for this zone SLIST is, once

again, the cl_m CLIST which contains grid node coordinates.

read_list_file(reference_clist='cl_m', skiplines=1, &

 slist=zone; column=3, &

 file='ibound_zones.ndt')

Then follow some reporting functions. These can be used in a PLPROC script to ensure that the script

is doing what it is supposed to be doing. Using the following function calls, all entities generated by

PLPROC are recorded in file report1.dat, while the coordinates of all points that comprise the cl_m

CLIST, and the values of all SLISTS which have this CLIST as its parent, are reported in file

report2.dat.

report_all_entities(file=report1.dat)

cl_m.report_dependent_lists(file='report2.dat')

Run PLPROC using the following command. (Substitute “plproc32” for “plproc64” if your machine

does not have a 64-bit operating system.)

 plproc64 plproc1.in

Now inspect files report1.dat and report2.dat.

12

 Pilot Points
We are now going to parameterize each of zones 3 to 10 of our model using pilot points. Files

containing the coordinates of pilot points, as well as hydraulic conductivity values associated with pilot

points, are provided as files pp_k_z[3-10].pts. In this file-naming convention, “pp” stands for “pilot

point”, “k” stands for hydraulic conductivity and “z” stands for “zone”. Where PEST is used for model

calibration, a template for each of these files would normally be constructed so that PEST could

transfer current hydraulic conductivity values to each of them prior to running the model. PLPROC

would then be run in response to a command issued in the batch file which PEST runs as “the model”.

PLPROC refers to files such as pp_k_z[3-10].pts as “list files”. Data residing in list files is arranged in

columns; the first column contains point identifiers, the second and third columns contain point x any

y coordinates, the fourth column contains z coordinates (but only if points are three-dimensional), and

subsequent columns contain real or integer values associated with listed points. More than one

property or integer value can be associated with each point; hence the file read by PLPROC can have

many columns.

Figure 4a shows pilot points that are used to inform zone 3 of our model while figure 4b shows pilot

points that are used to inform zone 5.

Figure 4a. Pilot points used to inform zone 3, together with model cells which comprise zone 3.

13

Figure 4b. Pilot points used to inform zone 5, together with model cells which comprise zone 5.

Inspect file plproc2.in. The first part of this file is the same as plproc1.in except that the reporting

function calls have been moved to the bottom of the file. The places where these functions used to

be listed are now occupied by a set of calls to function read_list_file(). One of these function calls is

reproduced below.

cl_k3 = read_list_file(skiplines=1, dimensions=2, &

 plist='pp_k3'; column=4, &

 id_type='integer', &

 file='pp_k_z3.pts')

The above read_list_file() function call instructs PLPROC to read file pp_k_z3.pts containing data for

pilot points assigned to zone 3. This function knows that the x and y coordinates of these points reside

in the second and third columns of the file. These coordinates are used to create a new CLIST, in this

case named cl_k3. A cl_k3-dependent PLIST named pp_k3 is created at the same time. The elements

of this PLIST contain hydraulic conductivities assigned to pilot points as read from the fourth column

of file pp_k_z3.pts. If desired in later PLPROC processing, individual pilot points can be identified

through the integer value comprising the first column of this file; this is established using the

id_type=’integer’ argument.

The PLPROC script contained in file plproc2.in finishes with reporting functions; as stated above,

these can provide assurance that PLPROC is working as expected. Once again, a record is made of

all entities that PLPROC has in storage; these are written to file record1.dat. Meanwhile file

record2.dat is used to store all data pertaining to the cl_k3 CLIST and its dependent PLISTs (in this

case the pp_k3 PLIST).

Run PLPROC using the command

 plproc64 plproc2.in

Inspect the contents of files record1.dat and record2.dat.

 Interpolation from Pilot Points to Model Grid Nodes
Inspect file plproc3.in, which is a continuation of file plproc2.in but with the reporting functions moved

to the end of the file. A call to function new_plist() marks the first part of the new section of this file.

A new PLIST named k_m is created; its parent CLIST is cl_m (the CLIST that describes all nodes of

the MODFLOW-USG model). This function assigns a default value of 0.0 to all nodes of the model

grid. This PLIST will shortly house hydraulic conductivity values interpolated from pilot points.

14

k_m =new_plist(reference_clist=cl_m, value=0.0)

A series of calls to the radial basis interpolation function rbf_interpolate_2d() follows this. The first of

this series is reproduced below.

k_m(select=(zone==3))=pp_k3.rbf_interpolate_2d(&

 transform='log', &

 rbf=imq; epsminsepfac=0.8, &

 constant_term='yes', &

 report_file='report_k.dat')

The above function interpolates hydraulic conductivity values found in the pp_k3 PLIST to elements

of the k_m PLIST, but only if these elements are in zone 3. Actually, it interpolates the logs of hydraulic

conductivities and then back-transforms to the domain of natural numbers after interpolation has taken

place (this is effected using the transform=’log’ argument). Interpolation employs the inverse

multiquadratic radial basis function type, this being described by the following equation.

()
()21

1

r
rf

+
=

Using the epsminsepfac=0.8 subargument of the rbf argument of the rbf_interpolate_2d() function,

the ε parameter is decreed as being location-specific; for the radial basis function associated with any

pilot point it is assigned a value equal to the reciprocal of 0.8 times the distance from that pilot point

to its nearest neighbour.

Radial basis function interpolation requires that a high dimensional series of simultaneous equations

be solved in order to evaluate coefficients associated with the functions. The numerical details of

solving these equations are recorded in file report_k.dat. Such reporting is optional; it is effected using

the report_file=’report_k.dat’ argument.

More reporting takes place at end of file plproc_3.in. Once again, all entities housed in PLPROC’s

memory are recorded in file report1.dat. Details of PLISTs and SLISTs associated with the cl_m

CLIST are recorded in file report2.dat.

Run PLPROC using the command

 plproc64 plproc3.in

When it has completed execution inspect files report1.dat, report2.dat and report_k.dat. Notice from

report2.dat that interpolation has taken place to all active nodes of the MODFLOW-USG grid.

 Evaluating Vertical Hydraulic Conductivities
The values ascribed to pilot points contained in files pp_k_z[3-10].pts are actually horizontal hydraulic

conductivities. We will assume that vertical anisotropy is uniform in each zone. Values for zone-

specific vertical anisotropy will be read from a file named vanis.dat. Normally a template would exist

for this file so that these can be estimated by PEST. Inspect vanis.dat. It has two columns. Items in

the first column are the names of so-called “scalar variables” (PLPROC nomenclature) that will be

used to denote zonal vertical anisotropies; these names are retained by PLPROC. The second

column lists values of these variables. This file is read using the following function call recorded in file

plproc4.in.

read_scalar_file(file="vanis.dat", valuecolumn=2, &

 namecolumn=1, skiplines=1)

15

Next a PLIST named kz_m is created. Its parent is the cl_m CLIST, so it has an element for every

node in the MODFLOW-USG grid. All of these elements are given an initial value of zero.

kz_m=new_plist(reference_clist = cl_m, value=0.0)

Vertical hydraulic conductivity is next calculated for every active node of the MODFLOW-USG grid

using a series of simple, zone-specific equations that involve the k_m PLIST and the respective zone-

specific vertical anisotropy. The first such equation is shown below.

kz_m(select=(zone==3)) = k_m/vanis_z3

File plproc4.in ends with the usual reporting functions. Run PLPROC using the command

 plproc64 plproc4.in

It is obvious from file report2.dat that values of vertical hydraulic conductivity have been assigned to

all active cells of the MODFLOW-USG grid.

 Writing Model Input Files
File plproc5.in includes the contents of file plproc4.in but adds the ability to write nodal horizontal and

vertical hydraulic conductivity values to MODFLOW-USG input files. The final two function calls in file

plproc5.in record horizontal and vertical hydraulic conductivities to files named mfusg_k.dat and

mfusg_kz.dat respectively. These files are opened and assigned unit numbers in the MODFLOW-

USG name file; see file example.nam – part of the MODFLOW-USG input dataset. Meanwhile the

unit numbers associated with these files are referenced in the MODFLOW-USG LPF file so that

MODFLOW-USG knows that it must read horizontal and vertical hydraulic conductivities from them;

see file example.lpf.

Like PEST, PLPROC uses template files to transfer the numbers that it generates to model input files.

However, template files used by PLPROC can be much more sophisticated than those used by PEST

because they can contain embedded PLPROC functions. Below is the embedded function contained

in file mfusg_k.tpl which is used to write the MODFLOW-USG input file mfusg_k.dat. (In the present

case the embedded function constitutes the sole contents of the template file. In other cases, just as

for a PEST template file, the PLPROC template file can contain many other numbers and strings;

these are transferred directly to the model input file which PLPROC writes.)

$#p k_m.write_in_sequence(format="(1x,1pg14.7)")

The “$#p” string at the beginning of the above line informs PLPROC that a function call follows and

that the contents of this line are not therefore meant to be directly transferred to the model input file.

Instead, PLPROC is informed that it must write the contents of the k_m PLIST to the model input file,

with one element of the PLIST recorded on each line of that file. The name of the model input file is

provided in the write_model_input_file() function recorded in file plproc5.in along with the name of

the template file that is used to write this file. The function call is as follows.

write_model_input_file(template_file = 'mfusg_k.tpl', &

 model_input_file = 'mfusg_k.dat')

Run PLPROC using the command

 plproc64 plproc5.in

Inspect files mfusg_k.dat and mfusg_kz.dat. These files are ready for use by MODFLOW-USG.

16

 DISPLAYING IN PARAVIEW

 Hydraulic Property Data
Inspect file ibound_properties.ndt. This file is easily built by pasting the single column of data

appearing in each of files mfusg_k.dat and mfusg_kz.dat into file ibound_zones.ndt and adding a

header to these columns. We will now build a legacy VTK file which contains all of these data. This

will allow us to visualize the interpolated hydraulic conductivity fields in three-dimensions.

Run USG2VTK, responding to its prompts as follows. (Note that, as for any other member of the

Groundwater Utilities Suite, if you make a mistake when entering data you can backtrack to the

previous prompt by responding to the current prompt with “e” – for “escape” – followed by <Enter>.)

 Enter name of MODFLOW-USG grid or CLN specification file: example.gsf

 Enter name for VTK output file: example1.vtk

 Record scalar data in VTK file? [y/n]: y

 Enter name of tabular file from which to read node data: ibound_properties.ndt

 Enter column number of data to read (<Enter> if no more): 2

 Is this integer or real data? [i/r]: i

 Enter column number of data to read (<Enter> if no more): 3

 Is this integer or real data? [i/r]: i

 Enter column number of data to read (<Enter> if no more): 4

 Is this integer or real data? [i/r]: i

 Enter column number of data to read (<Enter> if no more): 5

 Is this integer or real data? [i/r]: r

 Enter column number of data to read (<Enter> if no more): 6

 Is this integer or real data? [i/r]: r

 Enter column number of data to read (<Enter> if no more): <Enter>

If you have PARAVIEW installed on your computer, read file example1.vtk and colour according to

KH (after selecting only cells with a non-zero IBOUND value for display). Use a logarithmic scale for

colouring. Figure 5 shows the results, for all layers and then with layers successively removed.

17

Figure 5. Top row left: layers 1 to 4. Top row right; layers 2 to 4. Bottom row left: layers 3 and 4; bottom row right:

layer 4. Colouring is by log of horizontal hydraulic conductivity.

 Adding Pilot Points to the Picture
Just for the sake of creating some eye-candy, we will now visualize horizontal hydraulic conductivity

in zone 5 only, together with pilot points associated with that zone. We will actually plot the pilot points

in three dimensions. However before doing this we need to provide each pilot point with a vertical

coordinate. This is accomplished using the USGADDZCOORD utility which interpolates from the

MODFLOW-USG grid to the locations of pilot points. Run USGADDZCOORD, responding to its

prompts as follows.

 Enter name of MODFLOW-USG grid specification file: example.gsf

 - file example.gsf read ok.

 Enter name of activity node data table file (<Enter> if none): ibound.ndt

 Enter column number containing activities: 2

 - file ibound.ndt read ok.

 Enter name of tabular data file: pp_k_z5.pts

 Does this file have a header line? [y/n]: y

 Enter column number containing layer data (<Enter> if none): <Enter>

 Enter layer number to which this file pertains: 3

 Enter power of inverse distance to use in interpolation: 2

 Enter search radius: 1000

18

 Enter maximum number of points to use in interpolation: 4

 Enter name for new tabular data file: ppz_k_z5.txt

Inspect file ppz_k_z5.txt. A column of z coordinates has been added.

Now import file ppz_k_z5.txt into PARAVIEW. The field delimiter is the space character; inform

PARAVIEW to detect numeric columns, use string delimiters, save headers and merge consecutive

delimiters. The data is imported as a spreadsheet. Now use the PARAVIEW “table to points” filter to

create a set of three-dimensional points based on the pilot point data; X column is “EAST”, Y column

is “NORTH” and Z column is “Z”. Check the “keep all arrays” box. Display the pilot points (don’t forget

to alter the Z scale transformation factor to 20 in accordance with the scale factor used for plotting

model grid data).

Figure 6a shows a view of zone 5, coloured according to the range of horizontal hydraulic

conductivities appearing in that zone only (to a logarithmic scale). The blue “bull’s eye” suggests

erroneous local data used in the calibration process and/or that regularisation is insufficient. The pilot

points are added to this plot in Figure 6b, with hydraulic conductivities made transparent so that all of

the pilot points are visible.

Figure 6a. Close-up view of zone 5, with the colour scale adjusted to represent the range of horizontal hydraulic

conductivities featured in this unit.

19

Figure 6b. Pilot points specific to zone 5 added to the plot of Figure 6a.

20

gmdsi.org

