

LUMPREM
A simple recharge model

A GMDSI tutorial

by Rui Hugman and John Doherty

PUBLISHED BY
The National Centre for Groundwater Research and Training
C/O Flinders University
GPO Box 2100
Adelaide SA 5001
+61 8 8201 2193

DISCLAIMER
The National Centre for Groundwater Research and Training, Flinders University advises that the information in

this publication comprises general statements based on scientific research. The reader is advised and needs to be

aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions

must therefore be made on that information without seeking prior expert professional, scientific and technical

advice.

PREFACE
The Groundwater Modelling Decision Support Initiative (GMDSI) is an industry-funded and

industry-aligned project focused on improving the role that groundwater modelling plays in

supporting environmental management and decision-making.

Over the life of the project, GMDSI will produce a suite of tutorials. These are intended to

assist modellers in setting up and using model-partner software in ways that support the

decision-support imperatives of data assimilation and uncertainty quantification. Not only will

they focus on software usage details. They will also suggest ways in which the ideas behind

the software which they demonstrate can be put into practice in everyday real-world modelling

contexts.

GMDSI tutorials are designed to be modular and independent of each other. Each tutorial

addresses its own specific modelling topic. Hence there is no need to work through them in a

pre-ordained sequence. That being said, they also complement each other. Many employ the

same synthetic case and are based on the same simulator (MODFLOW 6). Utility software

from the PEST suite is extensively used to assist in model parameterization, objective function

definition and general PEST/PEST++ setup. Some tutorials focus on the use of PEST and

PEST++, while others focus on ancillary issues such as introducing transient recharge to a

groundwater model and visualization of a model’s grid, parameterization and calculated

states.

The authors of GMDSI tutorials do not claim that the workflows and methodologies that are

described in these tutorials comprise the best approach to decision-support modelling. Their

desire is to introduce modellers, and those who are interested in modelling, to concepts and

tools that can improve the role that simulation plays in decision-support. Meanwhile, the

workflows attempt to demonstrate the innovative and practical use of widely available, public

domain and commonly used software in ways that do not require extensive modelling

experience nor an extensive modelling skillset. That being said, users who are adept at

programming can readily extend the workflows for more creative deployment in their own

modelling contexts.

We thank and acknowledge our collaborators, and GMDSI project funders, for making these

tutorials possible.

Rui Hugman

John Doherty

CONTENTS
 Introduction .. 5

 The Groundwater Model ... 6

 Before we get started .. 6

 LUMPREM ... 7

 Setting up rain and potential evaporation files ... 7

 Setting up a LUMPREM input file .. 8

 Setting up an irrigation file ... 12

 Defining elevation or pseudo-head .. 13

 From LUMPREM to MODFLOW 6 ... 15

 Using LR2SERIES .. 15

 Manipulating Time Series files with TS6PROC ... 19

5

 INTRODUCTION
This document provides a tutorial on how to set up and use a simple lumped parameter recharge

model (named LUMPREM) in conjunction with a groundwater model. The tutorial will cover how to

set up LUMPREM models and how to convert LUMPREM outputs into inputs for a MODFLOW 6

model.

LUMPREM generates time series of groundwater recharge using daily rainfall and potential

evaporation as input. It can also be used to simulate crop water demand and residual potential

evaporation, i.e. the potential evaporation that is available to the groundwater system after the

demands of the unsaturated zone have been met. As well as this, it can generate proxy time series

of groundwater levels that can be applied to boundaries of a groundwater model. The concepts and

processes simulated by LUMPREM are described in the software’s documentation, which we

recommend reading (go on, we will wait). It is assumed that the reader is at least superficially familiar

with LUMPREM documentation. The current document does not describe these concepts in detail;

rather, it focusses on how to set up LUMPREM models for use with a groundwater model. In the

present tutorial, MODFLOW 6 is our groundwater model. However, the workflow described herein can

easily be adapted to other models.

This document will cover construction of LUMPREM model input files for different land-use and

irrigation characteristics. It will then discuss how to use the LR2SERIES utility to translate LUMPREM-

generated time series to a format that the RECHARGE, EVT and GHB packages of MODFLOW 6

can read. Lastly, it will demonstrate how to manipulate MODFLOW 6 time series files using the

TS6PROC utility. A schematic overview of the workflow is shown in the diagram below.

Figure 1 Diagram of a LUMPREM to MODFLOW 6 workflow.

The workflow will be demonstrated using the command line and text files. If you are partial to using

Python, the Lumpyrem package can be used in setting up and interacting with LUMPREM,

LR2SERIES and Flopy. Lumpyrem can be installed using pip or downloaded from GitHub. The latter

is the most up to date version. Example notebooks can be found in the GitHub repository. The current

tutorial does not cover use of Lumpyrem.

The underlying purpose of workflows described in this and other tutorials is to facilitate data

assimilation to quantify and constrain the uncertainties of a groundwater model’s predictions. As

LUMPREM is fast and nimble, parameters that affect recharge processes can be included in history

matching and uncertainty analysis without much additional computational cost. However, this requires

that the workflow (from LUMPREM to groundwater model) be automated as a set of commands (i.e.

batch file) that PEST/PEST++ can call during an inversion or uncertainty analysis process. During

that process, the parameters that are being estimated can belong to (a) MODFLOW (b) LUMPREM

https://github.com/rhugman/lumpyrem

6

and/or (c) some processing programs that manipulate time series that are passed between the two.

This document will discuss how to set up the various steps of an automated workflow to run

LUMPREM and prepare MODFLOW 6 input files. However, it will not discuss the use of

PEST/PEST++.

 The Groundwater Model
The examples discussed in the present document employ a synthetic MODFLOW 6 model that is

used in other GMDSI tutorials. Our hypothetical study area includes three land-use types. Each of

these land-use types has vegetation with different characteristics. Two of them represent irrigated

agriculture. All irrigation water comes from groundwater abstraction. Some irrigation is seasonal,

some is year-round.

The western edge of the model is represented using a general-head boundary (GHB) condition. The

elevation of this GHB is assumed to vary seasonally.

Therefore, to set up our MODFLOW 6 model the following are required:

• three different time series of groundwater recharge (one for each land-use type),

• three different time series of potential evaporation (one for each land-use type),

• two different time series of groundwater abstraction (one for each irrigated land-use type),

• one time series of GHB elevation.

The MODFLOW 6 model is endowed with an initial steady-state stress-period. An average value for

each of the described time series is required for this stress-period.

 Before we get started
Make sure that executable versions LUMPREM, LR2SERIES and TS6PROC are copied to your

machine; these are files lumprem.exe, lr2series.exe and ts6proc.exe For convenience, the folder in

which these executables are stored should be added to your computer’s PATH environment variable.

Alternatively, they can be placed in the working folder for this tutorial. To make completion of this

tutorial easy, these executables are provided in the software sub-folder.

Two input files are provided (Table 1). Make sure that these are in the tutorial folder.

Table 1 Files provided for the LUMPREM tutorial.

File name Description

climate_data.csv rainfall and potential evaporation data

lumprem_input_file_blank.in example blank LUMPREM input file

Several folders are provided. These are tutorial checkpoints. Each contains the files that should have

been produced by the end of each of the following chapters. Should you encounter any problems,

these may be useful in troubleshooting. They also allow you to jump into the tutorial at any stage.

However, it is recommended that you at least read through those parts of the tutorial that you do not

complete.

7

 LUMPREM
LUMPREM can be run in one of two ways. The first is to type its name at the command line prompt.

On commencement of execution, LUMPREM prompts for the name of its input control file, and for the

name of the output file which it must write. Alternatively, the name of its input and output files can be

supplied directly on the LUMPREM command line. An example will be demonstrated further on.

From the above it is apparent that to run LUMPREM we need to prepare an input file. We must also

specify the name and location of the file in which LUMPREM outputs will be saved. The input file

specifies parameters used by LUMPREM, as well as the names of other files that contain rainfall and

potential evaporation time series. If vegetation characteristics and irrigation rates vary over time, these

can be provided in files as well.

The relationship between LUMPREM and its input/output files is schematized below. As you can see,

each LUMPREM model run requires a unique input file and produces a unique output file. Files that

contain input time series (rainfall, potential evaporation, etc.) can be unique to each LUMPREM

model, or shared between several LUMPREM models. In the following chapters we will demonstrate

a case in which several LUMPREM models share rainfall, potential evaporation and vegetation input

files, but each have different inputs for irrigation (as illustrated in the diagram below).

Figure 2 Diagram of a LUMPREM workflow and input/output files.

 Setting up rain and potential evaporation files
Open file climate_data.csv using your preferred spreadsheet software (for example, Microsoft

EXCEL). Take a look at the structure of this file. This is our “raw data” and is likely representative of

climate data that may be available at any given site. As you can see, daily values are provided over

a roughly 2-year period. Some days have missing values. Note that units are in mm/day. We will need

to make use of the data in this file to create the rain and potential evaporation input files for

LUMPREM.

To keep things simple, let us assume that the first day of our simulation is the 1st of January 2000 and

that the last day of our simulation is 31st of December 2001. When we set up the MODFLOW 6 model,

time units of metres and days will be employed. For consistency, we will therefore use metres as our

LUMPREM length unit (the use of days for time is mandatory). So, our first step is to convert climate

8

data supplied in climate_data.csv from units of mm/d to those of m/d. Go ahead and do this now. If

you are using a spreadsheet package such as EXCEL, be careful to note that blank cells are not the

same thing as zero.

1 Convert the units of rainfall and potential evaporation values in climate_data.csv to m/d.

Let us now create two files, one of which (rain.dat) will hold rainfall data, and the other of which

(epot.dat) will hold potential evaporation data. These two files will be used by all the instances of

LUMPREM that we develop in this tutorial. They can be created in any text editor or spreadsheet

software. The format for rain.dat and epot.dat is quite forgiving. Each must contain two columns of

data. On each line the first entry is the simulation day (an integer), while the second entry is the value

corresponding to that day (a real number). Days must be provided in increasing order. Not every day

needs to be represented. However, days with missing values must be removed (if they are not,

LUMPREM will return an error specifying that there are insufficient entries). After removing rows with

missing entries, LUMPREM will assume values on days which are not cited in the input file. Rainfall

will be assumed as zero and potential evaporation as the value from the previous day.

After converting the units, copy values in the Day and rainfall columns of file climate_data.csv to a

new file named rain.dat. The new file can be either comma or whitespace delimited. Do not include

column name headers in this file. Do the same for data in the Ev column; call the new file epot.dat. In

practice, you can give the files whatever names you like; however, these names are easy to

remember.

2 Create two new files: rain.dat and epot.dat.

3 Copy the Day and rainfall (m/d) columns from climate_data.csv to rain.dat. Do not include column

name headers.

4 Copy the Day and potential evaporation (m/d) columns from climate_data.csv to epot.dat. Do not

include column name headers.

5 In each file, delete all rows that have missing entries (i.e. that have a value in the Day column, but

no value in the second column) .

 Setting up a LUMPREM input file
Let us start off slowly with just one LUMPREM model. The lumprem_input_file_blank.in file provided

with this tutorial specifies the layout of such a file. Please read the LUMPREM manual for detailed

explanations for all of its variables. Let us now work through them as we turn these specifications into

a real LUMPREM input file.

6 Make a copy of lumprem_input_file_blank.in. Name this copy lr_lu1.in. This stands for “lumprem

land-use 1”. Again, you can actually call it whatever you like, but we recommend that you stick

with this name for the sake of consistency with the tutorial.

7 Now, let us edit lr_lu1.in. Open the file in a text editor (for example, Notepad).

8 You will note that the file is divided into sections, denoted by a row with text preceded by an “*”

(i.e. “* earth properties”, “* volume to elevation”, etc.). Section titles should not be edited. only the

variables cited within a section can be edited. Let us start by editing the variables of the first

section: * earth properties. We will now proceed to replace each of the variable names with a

value.

9 The variable maxvol refers to the total volume of the soil moisture store. It is roughly equal to the

depth of the root zone times the soil porosity. Average root depths vary with vegetation type but

9

are often between 0.3 to 1 m. Let us assume vegetation has a root depth of 1m, and soil porosity

is on average 0.2, giving us a maxvol of 0.2. Replace “maxvol” in the file with the value 0.2.

10 irrigvolfrac represents the fraction of soil moisture volume that irrigation must maintain (if

irrigation is active). It must lie between 0.0 and 1.0. As Land-use 1 is not irrigated we can set this

to 0.

11 rdelay and mdelay define the time lag in days (including fractions of days) between water leaving

the soil moisture storage and reaching the saturated zone (i.e. the aquifer). rdelay is usually larger

than mdelay, as the latter refers to fast-tracking macropore recharge. Both are functions of the

depth to the saturated zone, and both are functions of soil permeability (especially rdelay). Set

these to as 5.0 and 1.0, respectively.

12 ks is the saturated hydraulic conductivity of the soil. Set this to 10.0.

13 m and l define the shape of the drainage rate vs stored water function and the pore connectivity,

respectively. Set them both to 0.5. See the manual for explanations of these variables.

14 mflowmax defines the maximum volume of macropore recharge that can occur on any given day.

Let us set it quite high at 0.1.

So far, your file should look something like this (we have used whitespace to separate values; you

can use tab, whitespace or commas if you prefer):

15 Now we reach the * volume to elevation and * topographic surface sections of the LUMPREM

input file. For this particular LUMPREM model, we are not concerned about these values (we will

get to them later), but we still need to provide values for them in the LUMPREM input file. Provide

the values that are shown below. These variables only affect how LUMPREM translates storage

* earth properties

0.2 0.0

5 1

10.0 1.0 0.5 0.1

* volume to elevation

offset factor1 factor2 power [elevmin elevmax]

* topographic surface

surface

* initial conditions

vol

nrbuf nmbuf

(rbuf(i), i=1,nrbuf)

(mbuf(i), i=1,nmbuf)

* solution parameters

nstep mxiter tol

* timing information

numdays noutdays

(outday(i),i=1,noutdays)

*data filenames

vegfile OR cropfac_all gamma_all

rainfile

epotfile

irrigfile OR irrigcode_all gwirrigfrac_all

10

volume to pseudo-head. They do not affect the storage calculations. As we are not interested in

the pseudo-head from lr_lu1, the value of these variables is irrelevant.

16 In the * initial conditions section of the LUMPREM input file we specify the starting volume of

water in the soil moisture store, and the volume of any recharge that may be occupying the

recharge buffers; presumably these were filled in days before the beginning of the simulation. The

latter represents water which may have left the soil moisture store before the simulation started,

but has not yet reached the saturated zone as recharge.

17 vol defines the starting volume of soil moisture. Let us assume that this is half of maxvol. Replace

“vol” with 0.1.

18 This next line gets a bit more complicated. nrbuf and nmbuf are the number of elements in the

rbuf and mbuf delayed storage arrays (or lists). These arrays hold recharge that is on its way to

the water table. The size of these arrays specifies the maximum time in days for which recharge

can be delayed. The initial contents of these arrays hold recharge that is already on its way to the

water table. Let us assume that there is no prior macropore recharge, but that two and three days

before our simulation started, 0.002 m and 0.003 m left the soil moisture store, respectively. Let

us further assume that the maximum number of days for which macropore recharge can be

delayed is 1, while the maximum number of days for which normal recharge can be delayed is 3.

Hence replace nrbuf and nmbuf with 3 and 1, respectively.

19 Now we need to record the initial contents of these rbuf and mbuf arrays. For rbuf there are three

elements: 0.0, 0.002 and 0.003; for mbuf there is only one: 0.0. Note that the ordering of moisture

stored in these arrays is 1 day before start, 2 days before start, and so on.

After you have made these replacements, the * initial conditions section of the LUMPREM input file

should look something like this:

20 In the * solution parameters section of the LUMPREM input file, set the values of nstep, mxiter

and tol to 4, 500 and 1e-5, respectively. These specify the details of how LUMPREM iteratively

solves the equation for stored soil moisture. If LUMPREM informs you that this iterative solution

procedure has not converged, increase nstep and mxiter. This will increase LUMPREM

execution time; however, LUMPREM runs so quickly that this hardly matters. As a last resort you

can increase tol. You should not encounter convergence problems during this tutorial.

21 In the * timing information section of the LUMPREM input file, LUMPREM’s simulation time, and

the times at which it must record information on its output file, are specified.

22 numdays defines the total number of simulation days. We are simulating two years. Set this to

731.

23 noutdays defines the number of instances at which LUMPREM-calculated quantities must be

recorded on its output file. Suppose that we desire output at the end of each month of the 2-year

* volume to elevation

0.0 2.0 3.0 0.5 -9999.0 10000.0

* topographic surface

0.0

* initial conditions

0.1

3 1

0.0 0.002 0.003

0.0

11

simulation. This means that there are 24 times at which information must be recorded. Replace

noutdays with 24.

24 Next, we must inform LUMPREM of the days on which it must record outputs, by providing an

array (list) of day numbers. LUMPREM will record the system status and accumulated fluxes at

the end of these chosen days (at midnight). So, suppose that we wish to record outputs at the end

of the first month of the simulation. The first month is January, which has 31 days. Therefore, the

first entry in the array of output times must be 31 (the last day of the month).

25 Fill the outday list with day numbers that match the last day of each calendar month of the

simulated period (use spreadsheet software such as EXCEL to help you). Note that you do not

have to specify that LUMPREM record its outputs at the end of calendar months; in practice you

can use any integer interval that you like (fractions of days are not accepted).

The * timing information section of the LUMPREM input file should now look something like this:

26 Finally, we reach the * data filenames section of the LUMPREM input file. Here we will inform

LUMPREM from which files it must obtain rainfall and potential evaporation time series. We will

also set up how vegetation and irrigation variables behave over time.

27 Starting with the easy ones, replace rainfile and epotfile with the respective filenames. In our

case these are named rain.dat and epot.dat.

28 How we define the vegfile and irrigfile variables depends on how we want these parameters to

vary over time. If we want them to be constant over the entire simulation, we can simply provide

their values directly in the LUMPREM input file. Alternatively, we can create additional files with

time-varying values. For now, let us assume constant values (we will use time-varying values later

in the tutorial).

29 For vegetation, let us assume that crop factor and gamma are both 1.0 over the entire simulation

time.

30 As stated above, Land-use 1 (the land-use for which the current instance of LUMPREM is being

set up) is not irrigated, so we can set irrigcode to 0 (0 means off; 1 means on). As there is no

irrigation, gwirrigfrac becomes irrelevant; however, it still requires a value. Set it to 0.0.

The * data filenames section of the LUMPREM input file should now look something like this:

OK, great! We are now ready to run our first LUMPREM model.

31 Open a command line window in your working folder and type “lumprem lr_lu1.in lr_lu1.out” at the

prompt. This command tells LUMPREM to run using the lr_lu1.in input file and to write results to

file lr_lu1.out. Press <enter>.

32 Alternatively, you can use a batch file to automate the process of responding to user prompts. An

example batch file (run_models.bat) is provided in the tutorial_1 folder.

* timing information

731 24

31 60 91 121 152 182 213 244 274 305 335 366 397 425 456 486 517 547 578

609 639 670 700 731

* data filenames

1.0 1.0

rain.dat

epot.dat

0 0.0

12

33 If all goes well, you should see something like this on your screen:

Check your working folder. You should find a new file called lr_lu1.out. Open it and take a look. There

are many columns (see the manual for descriptions of each of them). Copy (or open) the file into your

preferred spreadsheet or graphing package to become familiar with the outputs.

 Setting up an irrigation file
Recall from the start of this tutorial that our model domain includes areas with three different land-

uses. We have just set up a LUMPREM model for Land-use 1, which has no irrigation. Land-use 2

and Land-use 3 are irrigated. Land-use 2 has year-round irrigation. Land-use 3 is only irrigated during

half of the year. For simplicity, let us assume that all other soil and vegetation characteristics are the

same as for Land-use 1.

34 Make two copies of lr_lu1.in. Call them lr_lu2.in and lr_lu3.in respectively.

35 In both of these files, set irrigvolfrac to 0.2 (see point 10 above, as well as the LUMPREM

manual).

36 In lr_lu2.in, change the values ascribed to the irrigcode and gwirrigfrac variables (see point 30

above). Irrigation is active, so set irrigcode to 1 (recall that 1 means irrigation is on, whilst 0

means it is off). At our hypothetical site, all irrigation is supplied from groundwater, so set the

fraction of irrigation supplied by groundwater (gwirrigfrac) to 1.0.

The last section of file lr_lu2.in should now look something like this:

37 Run LUMPREM using lr_lu2.in as its input file and save its outputs in file lr_lu2.out (see point 31).

38 Now, for lr_lu3.in we want to make irrigation vary over time. So, we need to instruct LUMPREM

to read an external file that contains an irrigation time series (which we must create). Let us start

by writing this file.

39 The irrigation file must have three columns which contain the day, irrigcode and gwirrigfrac

variables. The columns specify the days on which irrigation begins/ends and the fraction of

irrigation that is supplied by groundwater. For simplicity, we will assume that the latter is always

1.0.

40 In Land-use 3, we happen to know that farmers commence irrigation on the 1st of May and cease

irrigation on the 30th of September every year (conveniently). However, the first line of the irrigation

file must always refer to day 1. As the simulation starts with no irrigation, set irrigcode and

gwirrigfrac to 0.0 on the time-period which begins on day 1.

41 As our simulation starts on the 1st of January 2000, irrigation will begin on simulation day 122.

Irrigation ceases on day 274. And then starts again in the following year on day 487. And so on.

Write the remaining lines into the irrigation file and save it as irrig.dat. It can be saved as

whitespace or comma delimited values. We have used whitespace. It should look something like

this:

C:\..\your working folder > lumprem lr_lu1.in lr_lu1.out

 - file lr_lu1.in read ok.

 - file lr_lu1.out written ok.

* data filenames

1.0 1.0

rain.dat

epot.dat

1 1.0

13

42 Run LUMPREM with lr_lu3.in as its input file. Save its outputs to file lr_lu3.out (see point 31).

43 Let’s take a look at the results and see how Land-use2 and 3 differ. Our outputs are shown in the

plot below. Note how irrigation continues year-round for Land-use2, whilst irrigation for Land-use3

drops to zero during half the year.

Figure 3 LUMPREM simulated irrigation volumes for Land-use 2 and Land-use 3.

 Defining elevation or pseudo-head
LUMPREM records the daily volume of stored water in its output file. This quantity can rise steeply

after rainfall and decay slowly thereafter. As such, its behaviour is not unlike that of groundwater

levels in a shallow aquifer. LUMPREM allows a user to calculate a “pseudo groundwater head” time

series from daily volumes using a nonlinear function whose parameters can be set by the user (and/or

adjusted through history matching). This pseudo-head time series is also recorded in LUMPREM’s

output file. Like other time series that are recorded in this file, it can serve as an input time series for

a groundwater model.

We wish to assign a time varying elevation to the GHB that forms one of the boundaries of our

groundwater model. We shall now set up a LUMPREM model to generate this elevation time series.

Make another copy of lr_lu1.in. Call it lr_ghb.in. For simplicity we will keep all parameters the same,

except for those which reside in the * volume to elevation and * topographic surface sections.

The * volume to elevation section houses six LUMPREM variables. See the LUMPREM manual for

the equation that these variables inform. In brief, offset, as the name suggests, provides an offset

from the storage volume to some elevation. The next three variables (factor1, factor2 and power)

deform the storage time series so that it looks more like an elevation time series. Lastly, elevmin and

elevmax set bounds for the elevations that are calculated by this equation. As their names suggest,

these represent minimum and maximum possible groundwater levels.

0

0.025

0.05

0.075

0.1

0.125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ir
ri

g
a
ti

o
n

 (
m

/m
2
)

Month

lu3

lu2

1 0 0

122 1 1

275 0 0

487 1 1

640 0 0

14

Change the values for these variables in file lm_ghb.in to: 50.0, 10.0, 10.0, 0.1, -9999.0 and 10000.0

respectively. We are simply setting the maximum and minimum elevation as extremely high and

extremely low, respectively. This way they will not clip LUMPREM’s outputs.

The surface variable in the * topographic surface section of the LUMPREM input file defines the

elevation of the topographic surface. This will be used to set the depth to groundwater calculated by

LUMPREM. In the present instance, we set it to 80.0 metres.

Run LUMPREM and take a look at the elevation time series which it calculates. If you plot LUMPREM-

calculated elevation of lr_lu1 and lr_ghb you can see how the variables discussed above transform

LUMPREM’s output. You should see something like the graph below. Note that the scale for lr_ghb

elevation is plotted on the left axis of this graph while and the scale for elevation of lr_lu1 is shown on

the right-axis. Note how the elevation of lr_ghb is offset by more than 50m and has a larger variability

than of lr_lu1. Recall that the offset in lr_lu1 is zero; hence elevation is similar to the simulated values

of storage volume.

Figure 4 LUMPREM simulated elevation time series from the lr_lu1 and lr_ghb models.

If you like, play around with the values for offset, factor1, factor2 and power to get a feel for their

impact. However, in practice these would usually be adjusted by PEST or PEST++ during history

matching of the composite MODFLOW 6/LUMPREM model so that the outputs of this model match

field observations.

Excellent, so we now have several LUMPREM models set up and running. The next step is to

generate MODFLOW 6 time series input file (i.e.TS6 files) from LUMPREM outputs. We will address

this in Chapter 3.

The tutorial_1 folder contains all files generated up to this point, as well as a batch file to run each of

the LUMPREM models sequentially.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

54.5

55

55.5

56

56.5

57

57.5

58

58.5

59

59.5

-70 30 130 230 330 430 530 630 730

lr
_l
u
1

e
le

va
ti

o
n

 (
m

)

lr
_g

h
b

e
le

va
ti

o
n

 (
m

)

days

ghb

lu1

15

 FROM LUMPREM TO MODFLOW 6
In Chapter 2 of this document we described the process of setting up and parameterizing several

LUMPREM models. The purpose of these LUMPREM models is to generate inputs for a groundwater

flow model. The current chapter demonstrates how to convert LUMPREM-generated outputs into files

which can be read by MODFLOW 6 stress packages. This chapter is divided into two parts. The first

part demonstrates the use of the LR2SERIES utility to generate MODFLOW 6 time series files (TS6

files) from LUMPREM output files. The second part demonstrate the use of TS6PROC to apply

additional transformations to these TS6 files.

As previously described, the underlying purpose of this workflow is to facilitate data assimilation in

order to quantify and constrain the uncertainties of a groundwater model’s predictions. To this end all

of the steps described herein need to be carried out as part of an automated process which can be

called by PEST/PEST++. The following chapter will describe how to set up the steps of an automated

workflow which converts LUMPREM outputs into MODFLOW 6 inputs. However, it will not cover set

up of PEST/PEST++.

The workflow demonstrated herein is specific to MODFLOW 6. It is assumed that the reader is familiar

with MODFLOW 6 and its file structures. That being said, the concepts are directly translatable to

other modelling codes. For example, actions carried out by LR2SERIES and TS6PROC can easily

be replicated using FEFLOW’s embedded Python interface or plugin functionality.

 Using LR2SERIES
We are now going to use the LR2SERIES utility to convert LUMPREM outputs into MODFLOW 6 time

series files. “LR2SERIES” stands for “LUMPREM output file to time series file”. This utility reads one

or a number of LUMPREM output files and writes one or a number of MODFLOW 6 time series files.

The suite of time series that it writes to the latter files are the same as, or modified from, those read

from LUMPREM output files.

LR2SERIES receives instructions on what it must do from a control file supplied by the user. We will

now construct that file. There are two actions that LR2SERIES takes. (1) It reads one or a number of

LUMPREM output files, and (2) it writes one or a number of MODFLOW 6 time series files. A single

LR2SERIES control file can instruct LR2SERIES to read multiple LUMPREM outputs (resident on

multiple LUMPREM output files), and write multiple time series to multiple MODFLOW 6 time series

files.

If you are starting fresh, the tutorial_1 folder contains all files generated up to this point. Alternatively,

if you have completed Chapter 2 of this tutorial, you can continue using the files you have generated.

44 Open a new blank text file in your text editor of choice. Save it as lr2series.in.

45 We will start by informing LR2SERIES of the LUMPREM outputs that we want it to read. A line

with the text “READ_LUMPREM_OUTPUT_FILE” instigates the action to read a file. It must be

followed by the name of the file that must be read, and the number of columns that must be read

from that file.

46 Let us start with the output from lr_lu1. From this LUMPREM model’s output file, we only need the

time series that reside in the recharge and gw_pot_evap columns. Type in the following. Note

the read file command, followed by the name of the LUMPREM output file, followed by the number

2. This command informs LR2SERIES that it must read two columns from the LUMPREM output

file lr_lu1.out.

READ_LUMPREM_OUTPUT_FILE lr_lu1.out 2

16

47 Following this header, the next two lines of the LR2SERIES input file must inform LR2SERIES

which columns to read, and how to read them. Each of these subsequent lines must contain three

entries, these being as follows:

• A user-supplied name for the time series that will be recorded on the MODFLOW 6 time series

file (and then used by MODFLOW 6 itself). Note that each name supplied for a MODFLOW 6

time series must be unique.

• The name of the LUMPREM output file column to read.

• Whether to divide LUMPREM-generated time series values by the time-interval over which

they were accumulated. These two options are distinguished through use of either the

div_delta_t or no_div_delta_t string.

48 Let us start by reading the recharge column from the LUMPREM output file. Name the

corresponding MODFLOW 6 time series as rch_lu1. Recall from LUMPREM documentation that

LUMPREMs output for recharge is the accumulated recharge volume over the time-interval that

prevails since the last output time. However, MODFLOW 6 expects a rate. Hence, we must divide

the LUMPREM-generated quantity by the time-interval over which it was accumulated. To do this,

simply provide LR2SERIES with the instruction div_delta_t.

49 Do the same for the gw_pot_evap column of the LUMPREM output file. The pertinent section of

the LR2SERIES control file should look something like this:

50 OK, great. We can now progress to other LUMPREM output files. You can repeat the same

procedure as above for Land-use 2 and Land-use 3. Just copy and paste this section of the

LR2SERIES input file to create another section; alter the name of the LUMPREM output file that

must be read, and provide a new name for the MODFLOW 6 time series. We recommend using

the same naming convention as that which has been employed up until now, namely rch_lu2,

rch_lu3, etc.

51 There is one further change necessary for Land-use 2 and Land-use 3. Recall that we wish to

extract groundwater for irrigation in these land-use areas. Therefore, we need to provide time

series to the WEL package to simulate abstraction. The LUMPREM output column

gw_withdrawal provides simulated abstraction volumes. So, we need to read an additional

column from the LUMPREM output file.

52 For Land-uses 2 and 3, the number of LUMPREM columns that must be read should be altered

from 2 to 3; this requires the addition of a new line. Name the MODFLOW 6 well time series

wel_lu2 and wel_lu3, respectively.

53 Finally, we need to read the elevation column from lr_ghb.out. Name the respective MODFLOW

6 time series ghb.

54 Note that the elevation output column that is recorded on the LUMPREM output file records

elevations at discrete points in time. Therefore, respective MODFLOW 6 time series do not need

to be divided by the length of the time interval that has elapsed since the last LUMPREM output

time. This is denoted using the text string “no_div_delta_t”.

55 By now your LR2SERIES input file should look something like this:

READ_LUMPREM_OUTPUT_FILE lr_lu1.out 2

rch_lu1 recharge div_delta_t

evp_lu1 gw_pot_evap div_delta_t

17

56 We have now informed LR2SERIES what to read. Next, we need to tell it what to do with the time

series which it has just read. This is accomplished using one or a number of

“WRITE_MF6_TIME_SERIES_FILE” blocks. Each command of this type must also be followed

by the name of the MODFLOW 6 time series file that must be written, and by the number of time

series that must be recorded on that file. Optionally this must be followed by a number which

specifies a time series shift; see LR2SERIES documentation for further details.

57 Our MODFLOW 6 model has two stress periods: it starts with a steady-state stress-period; this is

followed by a transient stress-period. LUMPREM calculates MODFLOW 6 inputs for the transient

stress-period. (The fact that these inputs can change over the time spanned by a single stress

period distinguishes MODFLOW 6 from previous versions of MODFLOW. This is one of the

outcomes of using time series to express these changing stresses.) Introduction of a steady state

stress period to precede the time-varying stresses creates a time-keeping problem as LUMPREM

simulation time will not match MODFLOW 6 simulation time after the introduction of this steady

state stress period. This time series mismatch will occur because LUMPREM day zero will

correspond to MODFLOW 6 day one; the preceding steady state stress period will be of one day’s

duration So we need to introduce this time offset when building a MODFLOW 6 time series file

from one or a number of LUMPREM output files. At the same time, values must be supplied for

steady state stresses (for example, recharge and evapotranspiration) which precede transient

stresses. This matter will be addressed later in this tutorial when use of the TS6PROC utility is

explained.

58 Let us start with the time series file that will be supplied for the recharge package. Let us call this

file rch.ts. Recall that we have employed three LUMPREM models to calculate three recharges

time series - one for each Land-use. So, we must inform LR2SERIES of this by recording the

number “3” on the header to this block. Then follows the number “1.0”. As was described above,

this informs LRSERIES that LUMPREM-calculated time series must be delayed by a day before

being provided to MODFLOW. The header for the block should look something like this:

59 The next three lines must identify which time series to write to the MODFLOW 6 time series file.

They must also record the properties that MODFLOW 6 requires for each time series, namely

scale, offset and method; see documentation of MODFLOW 6 for the roles of these variables.

60 Three Land-use rch time series must be recorded in file rch.ts. For each of these we will assign

values of 1, 0.0 and linearend to the MODFLOW 6 scale, offset and method variables,

respectively.

READ_LUMPREM_OUTPUT_FILE lr_lu1.out 2

rch_lu1 recharge div_delta_t

evp_lu1 gw_pot_evap div_delta_t

READ_LUMPREM_OUTPUT_FILE lr_lu2.out 3

rch_lu2 recharge div_delta_t

evp_lu2 gw_pot_evap div_delta_t

wel_lu2 gw_withdrawal div_delta_t

READ_LUMPREM_OUTPUT_FILE lr_lu3.out 3

rch_lu3 recharge div_delta_t

evp_lu3 gw_pot_evap div_delta_t

wel_lu3 gw_withdrawal div_delta_t

READ_LUMPREM_OUTPUT_FILE lr_ghb.out 1

ghb elevation no_div_delta_t

WRITE_MF6_TIME_SERIES_FILE rch.ts 3 1.0

18

61 Recall that time series supplied to MODFLOW 6 were delayed by a day. LR2SERIES introduces

a new element to each time series that pertains to time zero. Values are needed that correspond

to this time in each time series. LR2SERIES provides two options for this; either a value can be

provided, or the text “next” can be provided. The later instructs LR2SERIES to use the value

associated with the first non-zero time series element; this is the element that used to be the first

of the time series prior to time series delay and insertion of the new time series element. In our

case it does not matter what value we will use, as time series values pertaining to a time of zero

will be replaced shortly. Let us therefore use “next” for all time series. Feel free to experiment.

This block of the LR2SERIES file should look something like this:

62 Repeat this process for the EVT, WEL and GHB TS6 files. Call the TS6 files evp.ts, wel.ts and

ghb.ts, respectively. The GHB time series method should be set to linear instead of linearend.

63 If your file looks like this, you are ready to run LR2SERIES:

64 Open the command prompt, type lr2series and press <enter>.

65 You will be prompted for the name of its input file. Type lr2series.in and press <enter>.

WRITE_MF6_TIME_SERIES_FILE rch.ts 3 1.0

rch_lu1 1 0 linearend next

rch_lu2 1 0 linearend next

rch_lu3 1 0 linearend next

READ_LUMPREM_OUTPUT_FILE lr_lu1.out 2

rch_lu1 recharge div_delta_t

evp_lu1 gw_pot_evap div_delta_t

READ_LUMPREM_OUTPUT_FILE lr_lu2.out 3

rch_lu2 recharge div_delta_t

evp_lu2 gw_pot_evap div_delta_t

wel_lu2 gw_withdrawal div_delta_t

READ_LUMPREM_OUTPUT_FILE lr_lu3.out 3

rch_lu3 recharge div_delta_t

evp_lu3 gw_pot_evap div_delta_t

wel_lu3 gw_withdrawal div_delta_t

READ_LUMPREM_OUTPUT_FILE lr_ghb.out 1

ghb elevation no_div_delta_t

WRITE_MF6_TIME_SERIES_FILE rch.ts 3 1.0

rch_lu1 1 0 linearend next

rch_lu2 1 0 linearend next

rch_lu3 1 0 linearend next

WRITE_MF6_TIME_SERIES_FILE evp.ts 3 1.0

evp_lu1 1 0 linearend next

evp_lu2 1 0 linearend next

evp_lu3 1 0 linearend next

WRITE_MF6_TIME_SERIES_FILE wel.ts 2 1.0

wel_lu2 1 0 linearend next

wel_lu3 1 0 linearend next

WRITE_MF6_TIME_SERIES_FILE ghb.ts 1 1.0

ghb 1 0 linear next

19

66 Alternatively, you can use a batch file to automate the process of responding to user prompts. An

example batch file (run_lr2series.bat) is provided in the tutorial_2 folder.

67 If everything is set up correctly you should see something like the following on your screen:

68 Open up the TS6 files that LR2SERIES has just written and take a look. These can now be used

in a MODFLOW 6 model.

69 Great job! However, for the particular MODFLOW 6 model that we want to build, one additional

step is required: inserting values for the first steady-state stress-period. This will be covered in

Chapter 3.2.

70 The folder tutorial_2 contains all files generated up to this point as well as an additional batch file

to run LR2SERIES.

 Manipulating Time Series files with TS6PROC
At this stage we have time-varying inputs for our various packages during the transient part of our

simulation. But, as you recall, our model is set up to begin with an initial steady-state stress period;

this is followed by a transient stress-period. It is not uncommon for transient models to begin with a

steady-state stress period; this provides the opportunity to get initial heads approximately right for the

ensuing transient run.

Let us assume that the time-averaged value of each of our input time series is representative of the

steady-state inputs of the same type. Conceptually, we could just calculate these average values,

manually assign them to the first stress period of our MODFLOW 6 model and carry on. However, we

are sophisticated people and want to estimate LUMPREM parameters together with MODFLOW 6

parameters when we calibrate our joint model (comprised of three LUMPREM models and

MODFLOW 6); we also want to analyse the uncertainties of these parameters. So, we need to be

able to automatically update average values of LUMPREM model outputs on each occasion that the

values of LUMPREM parameters are altered by PEST/PEST++. For this we can use TS6PROC, a

utility program included as part of the PEST software suite.

C:\..\your working folder >lr2series

 Enter name of LR2SERIES control file: lr2series.in

 - reading file lr2series.in...

 - reading LUMPREM2 output file lr_lu1.out...

 - file lr_lu1.out read ok.

 - reading LUMPREM2 output file lr_lu2.out...

 - file lr_lu2.out read ok.

 - reading LUMPREM2 output file lr_lu3.out...

 - file lr_lu3.out read ok.

 - reading LUMPREM2 output file lr_ghb.out...

 - file lr_ghb.out read ok.

 - writing file rch.ts...

 - file rch.ts written ok.

 - writing file evp.ts...

 - file evp.ts written ok.

 - writing file wel.ts...

 - file wel.ts written ok.

 - writing file ghb.ts...

 - file ghb.ts written ok.

 - file lr2series.in read ok.

20

TS6PROC was written specifically to manipulate MODFLOW 6 time series when a model is run under

the control of PEST or PEST++. TS6PROC reads a MODFLOW 6 time series file (referred to as a

TS6 file from now on). It manipulates time series that are contained in this file in ways that are

specified through a TS6PROC input control file. It then writes a new TS6 file that contains the altered

time series. This altered file can be used by MODFLOW 6 in place of the original one.

A note on terminology for clarity: a TS6 “time series file” is a file read by MODFLOW 6 which can

contain one or several time series. For example, in the previous chapter we created a TS6 file called

wel.ts. That TS6 file contains two time series; these are named wel_lu2 and wel_lu3, respectively.

See documentation of MODFLOW 6 for full details.

TS6PROC offers a number of options for construction and manipulation of time series. A time series

can be built and/or modified through application of equations of arbitrary complexity that apply to all

terms of one or more existing series. These equations can feature parameters that can be

manipulated by members of the PEST and/or PEST++ suites when undertaking model calibration

and/or calibration-constrained uncertainty analysis. TS6PROC also provides a number of special

functions for manipulation of time series. In our case, we are only going to make use of one of these

functions. Other tutorials may explore TS6PROC in greater detail, thereby demonstrating the use of

other TS6PROC functions.

TS6PROC requires that the user prepare an input file which tells it what to do. This file contains three

blocks which outline: (1) the files that it must read and write, (2) the parameters to use in functions

that create or alter time series, and (3) the processes that it must carry out. The reader is advised to

read TS6PROC documentation for details of each of these. In this document we only provide details

that are pertinent to our current workflow.

If you are starting afresh, the tutorial_2 folder contains all files generated up to this point. Alternatively,

if you have completed Chapter 3.1, you can continue using the files that you have generated.

71 Our use of TS6PROC in this case is rather simple. For each of the time series created above from

LUMPREM outputs, we wish to replace the value for day 0 with the time averaged value of the

rest of the time series (recall that we shifted each time series backwards to make room for this

initial value). Luckily, our friendly software developers have included functions to do just this: the

time_average_over_interval() and assign_terms() functions.

72 Let us begin by setting up a TS6PROC input file that reads and adjust time series contained in

the well.ts TS6 file. Open a new file in a text editor and type in the text below:

73 This tells TS6PROC to read file wel.ts (which we created using LR2SERIES in the previous

chapter of this tutorial) and to write a new file named wel_new.ts after it has finished processing

the time series contained in the former file. wel_new.ts will become the TS6 file that MODFLOW

6 actually reads.

74 We have left the PARAMETER block empty for now, as we are not using any parameters in this

case. Hence there are no lines between BEGIN PARAMETERS and END PARAMETERS.

75 Next, we need to fill out the PROCESSING block of the TS6PROC input file. This is where we

define what operations to apply to the time series that were read.

BEGIN FILES

 FILEIN wel.ts

 FILEOUT wel_new.ts

END FILES

BEGIN PARAMETERS

END PARAMETERS

21

76 First, let us obtain the time averaged value of each of the time series contained in file wel.ts from

day 1 onwards. Recall that the TS6 file wel.ts has two time series, and that these are named

wel_lu2 and wel_lu3.

77 We will employ the time_average_over_interval() function on each time series and assign each of

the averages that it calculates to new variables. This function takes four arguments: (1) the time

series name, (2) whether log transformation is required before averaging, (3) the beginning of the

time interval over which averaging takes place and (4) the end of the time interval over which

averaging takes place. Starting with time series wel_lu2, let us create a new variable named avg2

to which we assign the time average of time series elements. To do this, simply type in the name

of the function, the values of its arguments, and the name of the new variable to which the average

is assigned as in the example below:

78 We defined avg2 as the average of values from time series wel_lu2 between time 1.0 and time

99999.0 (the latter is simply a very high number which goes beyond the end of the time series).

The argument none specifies that the function must average the actual values of time series

elements rather than their logs.

79 Now we need to tell TS6PROC what to do with the new quantity that it has just created. Recall

that we want to replace the value at time zero in our original time series with this average. For this

we will use the assign_terms() function to alter the wel_lu2 time series.

80 TS6PROC syntax demands that every function assign a value to something. This can be another

time series; or it can be a scalar quantity that is associated with a single value. By typing in the

variable name wel_lu2 followed by an equal sign followed by the name of the function (of which

wel_lu2 is one of its argument), we are informing TS6PROC that it must update the wel_lu2 time

series according to the function. Type in the text shown below:

81 Note that we have updated the time series wel_lu2, by assigning the value avg2 to time elements

between 0.0 and 0.0. In our case, the latter could be any value equal or greater than 0.0 or lower

than (but not equal to!) 1.0, the time for which our transient period begins.

82 Save the file as ts6wel.in. Now let us run TS6PROC with this file as the input file, so that we can

see the changes that we have implemented.

83 Open the command line, type ts6proc ts6wel.in and press <enter>.

84 Alternatively, you can use a batch file to automate the process of responding to user prompts. An

example batch file (run_ts6proc.bat) is provided in the tutorial_3 folder.

85 If all goes well, you should see the following:

BEGIN PROCESSING

 avg2 = time_average_over_interval(wel_lu2, none, 1.0, 99999.0)

END PROCESSING

BEGIN PROCESSING

 avg2 = time_average_over_interval(wel_lu2, none, 1.0, 99999.0)

 wel_lu2 = assign_terms(wel_lu2, avg2, 0.0, 0.0)

END PROCESSING

22

86 Open up wel.ts and wel_new.ts in a text editor and compare them. Note how the wel_lu2 time

series in wel_new.ts has changed in accordance with the instructions that we provided above.

87 Great. So now we can do the same for the wel_lu3 time series. Update the TS6PROC ts6wel.in

input file with functions to alter the wel_lu3 time series in addition to the wel_lu2 time series. The

revised file should look something like this:

88 Run TS6PROC again with the ts6wel.in input file and confirm your outputs. If you are content with

your results, you can now proceed to do the same for each of the other TS6 files which we

previously generated using LR2SERIES (rch.ts, evp.ts and ghb.ts). Note that you will need to

create an individual TS6PROC input file to process each of these TS6 time series files.

89 Congratulations, you now have a workflow to generate time-varying MODFLOW 6 inputs from

several LUMPREM models. All of which can be integrated into a PEST/PEST++ history-matching

or uncertainty analysis process.

90 The tutorial_3 folder contains all files generated up to this point. Individual batch files (*.bat) for

each of the steps in the workflow have been provided in this folder, along with a single batch file

which runs all the steps in one go (run_all.bat). In practice, PEST/PEST++ might call run_all.bat

after adjusting parameters within the LUMPREM input files. More complicated setups might also

consider adjustments to variables in TS6PROC input files. Although possible, it is unlikely that

LR2SERIES input files would be included as parameters in a PEST/PEST++ process.

C:\..\your working folder >ts6proc ts6wel.in

 TS6PROC Version 1.00. Watermark Numerical Computing.

 - reading file wel.ts...

 - file wel.ts read ok.

 Processing: average2 = time_average_over_interval...

 Processing: wel_lu2 = assign_terms(wel_lu2, avera...

 - writing file wel_new.ts...

 - file wel_new.ts written ok.

BEGIN FILES

 FILEIN wel.ts

 FILEOUT wel_new.ts

END FILES

BEGIN PARAMETERS

END PARAMETERS

BEGIN PROCESSING

 avg2 = time_average_over_interval(wel_lu2, none, 1.0, 99999.0)

 avg3 = time_average_over_interval(wel_lu3, none, 1.0, 99999.0)

 wel_lu2 = assign_terms(wel_lu2, avg2, 0.0, 0.0)

 wel_lu3 = assign_terms(wel_lu3, avg3, 0.0, 0.0)

END PROCESSING

23

gmdsi.org

