SEGLISTS

Interpolation along linear features

A GMDSI tutorial
by Rui Hugman and John Doherty

oamdsi

Groundwater Modelling
Decision Support Initiative

GROUNDWATER ioTinto
@EEE)’ RrrscoarCHANDTRAINING

PUBLISHED BY

The National Centre for Groundwater Research and Training
C/O Flinders University

GPO Box 2100

Adelaide SA 5001

+61 8 8201 2193

DISCLAIMER

The National Centre for Groundwater Research and Training, Flinders University advises that the information in
this publication comprises general statements based on scientific research. The reader is advised and needs to be
aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions
must therefore be made on that information without seeking prior expert professional, scientific and technical

advice.

PREFACE

The Groundwater Modelling Decision Support Initiative (GMDSI) is an industry-funded and
industry-aligned project focused on improving the role that groundwater modelling plays in
supporting environmental management and decision-making.

Over the life of the project, GMDSI will produce a suite of tutorials. These are intended to
assist modellers in setting up and using model-partner software in ways that support the
decision-support imperatives of data assimilation and uncertainty quantification. Not only will
they focus on software usage details. They will also suggest ways in which the ideas behind
the software which they demonstrate can be put into practice in everyday, real-world
modelling.

GMDSI tutorials are designed to be modular and independent of each other. Each tutorial
addresses its own specific modelling topic. Hence there is no need to work through them in a
pre-ordained sequence. That being said, they also complement each other. Many employ
variations of the same synthetic case, and are based on the same simulator (MODFLOW 6).
Utility software from the PEST suite is used extensively to assist in model parameterization,
objective function definition and general PEST/PEST++ setup. Some tutorials focus on the
use of PEST and PEST++, while others focus on ancillary issues such as introducing transient
recharge to a groundwater model and visualization of a model’s grid, parameterization, and
calculated states.

The authors of GMDSI tutorials do not claim that the workflows and methodologies that are
described in these tutorials comprise the best approach to decision-support modelling. Their
desire is to introduce modellers, and those who are interested in modelling, to concepts and
tools that can improve the role that simulation plays in decision-support. Meanwhile, the
workflows attempt to demonstrate the innovative and practical use of widely available, public
domain and commonly used software in ways that do not require extensive modelling
experience nor an extensive modelling skillset. However, users who are adept at programming
can readily extend the workflows for more creative deployment in their own modelling contexts.

We thank and acknowledge our collaborators, and GMDSI project funders, for making these
tutorials possible.

Rui Hugman

John Doherty

CONTENTS

1.
2.

3.

INEFOAUCTION ... 5
[7o Tod (o [£ 11 o 1S 6
2.1 The Groundwater MOdelccooiiiiiiiiiiiii 6
2.2 VIieWiNg the MOUEL........cooiiiii e e e 7
Interpolating to Linear FEAUIEScooviiiiiiiiiiie 9
3.1 The Easy Way (Using Pilot POINES)ccooviiiiiiiiiiiiiiee 9
THE POt POINTS ... 9
The PLPROC INPUL FIE ...eeiiiieeiee ettt 10
3.2 The Slightly Harder Way (Using Pilot Points and ZONEes)..........cccccvvvvviiiiiiiieennnnnn. 15
3.3 The Truly Linear Way (USiNng SEGLISTS)ccooiiiiiiiiiiiiiie 20
BUIldING the SEGLIST ...t e et a e 20

Generating the PilOt POINTSuuiiiiiiiiiiiiiiiiiiieiii bbb eeeeeeenennne 22

1. INTRODUCTION

This tutorial demonstrates several options for spatial parameterization of linear and polylinear
features. In a groundwater model, these may represent entities such as streams, rivers, faults, or
fracture networks. The hydraulic properties of these features may vary along their lengths. If this
variability is relevant for a prediction of interest, then its representation in a model is important.

Pilot points comprise a useful two- or three-dimensional spatial parameterization device. This tutorial
demonstrates how they can also be used in parameterization of one-dimensional entities that lie within
the two- or three-dimensional domain of a groundwater model. Piecewise linear interpolation from
pilot points to these entities is implemented using PLPROC — a PEST utility support program. In this
tutorial PLPROC is used in conjunction with MODFLOW 6.

‘PLPROC” stands for “Parameter List PROCessor’. PLPROC is designed to facilitate history-
matching of large numerical models by serving as a model-independent pre-processor for such
models. PLPROC allows a modeller to manipulate parameters that inform hydraulic properties that
are represented in a nhumerical model. In doing this, PLPROC supports PEST in facilitating model-
based decision-support which enshrines the principle that a model should encapsulate what we know
and quantify what we do not. The two GMDSI tutorials PLPROC: Basics and PLPROC: a simple pilot
point example provide a gentle introduction to PLPROC. The current tutorial assumes some familiarity
with PLPROC. This can be gained by completed these tutorials.

As well as PLPROC, this tutorial makes use of the MF62GIS utility from the PEST Groundwater
Utilities Suite. Executable versions of all programs belonging to the PEST Groundwater Utilities can
be downloaded from the PEST web site. However, to make this tutorial easy, executable versions of
programs that are needed for its completion are provided in the tutorial folder itself. See
documentation of the PEST Groundwater Utilities for full descriptions of their use. Before commencing
the tutorial, make sure that executable versions of these programs are copied to your machine (these
are the “*.exe” files). Ideally, they should be stored in a folder that is cited in your computer's PATH
environment variable. Alternatively, they can simply be copied to your working folder.

To make full use of this tutorial, you should have QGIS (or a GIS package with similar functionality)
installed on your computer. QGIS is open source and freely available through the world wide web.
The present tutorial makes use of utilities that enable visualisation of properties associated with a
MODFLOW 6 model. The GMDSI Model Visualisation and Display tutorial demonstrates how to setup
and use these utilities. The current tutorial assumes that you are already familiar with their use.

file:///C:/Users/rui2h/Downloads/gmdsi.org/blog/tutorial-plproc/
https://gmdsi.org/blog/plproc-a-simple-pilot-point-example/
https://gmdsi.org/blog/plproc-a-simple-pilot-point-example/
https://pesthomepage.org/groundwater-utilities
https://qgis.org/en/site/
https://gmdsi.org/blog/tutorial-visualisation-utilities/

2. BACKGROUND

This tutorial demonstrates the use of PLPROC in parameterizing a polylinear feature in a variant of a
MODFLOW 6 model that is used in other GMDSI tutorials as well. The procedures described herein
would normally be implemented as part of a PEST/PEST++ workflow, in which PLPROC
parameterizes a model that is undergoing history-matching under the control of PEST or PEST++.
Although the workflow described herein is specific to MODFLOW 6, the concepts that it demonstrates
can be easily adapted to other models and/or file structures. It is assumed that the reader is familiar
with MODFLOW 6 file structures.

Several folders are provided. These are tutorial checkpoints. Each contains the files that should have
been produced by the end of each of the following chapters. Should you encounter any problems,
they may be useful in troubleshooting. They also allow you to jump into the tutorial at any stage.
However, it is recommended that you at least read through those parts of the tutorial that you do not
complete.

2.1 The Groundwater Model

Relevant model files are provided in the tutorial folder. These include the MODFLOW 6 binary
discretisation file (model.disv.grb) which contains complete geometric specifications of the
MODFLOW 6 model grid; see documentation of MODFLOW 6 for full details. PLPROC, as well as
utilities such as MF62GIS from the PEST Groundwater Utilities Suite can read this file to obtain
information on the geometry of the model. A plan view of the model grid is displayed in Figure 1.

Streams that transect the model domain are represented using MODLFOW drain (i.e. DRN) boundary
conditions. The current tutorial demonstrates several methods for parameterizing the conductances
of drain cells. PLPROC assigns conductance values to DRN boundaries in individual model cells
based on those associated with pilot-points.

In the MODFLOW 6 input dataset that is provided with this tutorial, the external array file
model.drn_stress_period_data_1.txt, houses DRN hydraulic properties. This file is read by
MODFLOW 6 using its OPEN/CLOSE option. Open it in a text editor and take a look.

Figure 1 Plan view of the model grid. The grid is refined along the stream network, as well as along the right-hand
model boundary.

A note on the MODFLOW OPEN/CLOSE File Protocol

MODFLOW provides the option to store lists or arrays of model input data in external files. This
provides several benefits, including the following.

o External software such as PPROC can easily replace or modify an array or list that is stored
in such a file.
e The same file can be reused to inform multiple layers or stress periods in the same model.

When creating text files that will be read using MODFLOW’s OPEN/CLOSE protocol, note the
following.

¢ Inform MODFLOW 6 that it should read these external lists or arrays using the (FREE)
protocol. The reading of numbers then requires only that they be separated from each other
by white space (including a tab or new line); they are not required to occupy fixed positions
on a line. However, array values must be provided in order of increasing cell index.

e When providing two or three dimensional arrays in an external file, numbers comprising
these arrays can be supplied one to a line. This practice is “safe”, as it can be used for both
structured and unstructured grids.

That being said, the methods described in this tutorial do not depend on data being supplied in an
external file. PLPROC can read, manipulate, and alter data lists even in a standard MODFLOW
package input file (see pertinent PLPROC functions). However, for simplicity and coherency with other
GMDSI tutorials, the external file method is employed here.

2.2 Viewing the Model

Visualizing the model is not a requirement for completion of this tutorial. However, it will allow you to
see the effect of what you are doing (and is a little less boring than simply manipulating numbers).
We will use the MF62GIS utility from the PEST Groundwater Utilities Suite to write MIF/MID files of
the model grid. These can be read by most GIS software (including QGIS and SURFER). The GMDSI
Model Visualisation and Display tutorial demonstrates further use of this and other visualization-
support utilities. If you are comfortable using Python, similar functionality is available through Flopy.

As stated above, specifications of model DRN boundary conditions are stored in a file named
model.drn_stress_period data_1.txt (provided in the tutorial folder). This file is read by MODFLOW
using its OPEN/CLOSE protocol. However, the MF62GIS utility expects a slightly different file
structure. We need to add column headers, remove the layer number column, and ensure all columns
are integers or real numbers.

1 Make a copy of model.drn_stress_period_data_1.txt. Name it drains.dat.

2 Open drains.dat in a text editor or spreadsheet software. Delete the first column. Then, insert a
line at the top of the file and provide column headers for each of the remaining columns. Name
the columns: icpl, elevation, conductance, and reach.

3 Lastly, MF62GIS requires that all columns contain integers or real numbers. The reach column
currently contains text. Remove the text “stream-* from all rows.

4 The first few rows of drains.dat should now look like this:

icpl elevation conductance reach
2830 140.94892883 1000.00000000 1
2842 139.41760254 1000.00000000 1
2843 138.98307800 1000.00000000 1
2845 139.76692200 1000.00000000 1

https://gmdsi.org/blog/tutorial-visualisation-utilities/

Run MF62GIS, responding to its prompts as follows. User inputs are indicated in bold italics.

Alternatively, simply run the run_mf62gis.bat batch file provided in the tutorial folder.

Program MF62GIS writes a BLN file and MIF/MID files for a MODFLOW6 model.

Enter name of MODFLOW6 binary grid file: model.disv.grb

- file model.disv.grb read

ok.

Enter layer number of interest: 1
Enter name for BLN file (<Enter> if none): <enter>
Enter filename base for MIF/MID files (<Enter> if none): drains

Enter name of tabular data
The following columns have
Indicate whether you would

Data in column labelled

Data in column labelled

file (<Enter> if none): drains.dat

been detected in the table file.

like pertinent data transferred to MIF/MID file.
"elevation"? [y/n]: n

"conductance"? [y/nl: y

Does column contain integer or real data? [i/r]: ¢

Enter value for missing

data: 0

Add or replace values for duplicated cells [a/r]: r

Data in column labelled

"reach"? [y/n]l: y

Does column contain integer or real data? [i/r]: i
Enter value for missing data: O
Add or replace values for duplicated cells [a/r]: r

- reading tabular data file...

- 553 lines of data read from file drains.dat.
- file drains.mif written ok.

- file drains.mid written ok.

Open the MID/MIF file in your GIS software of choice to visualize the model grid and drain properties.
Figure 2 displays values for conductance and reach number. As you can see, reaches are numbered
1 to 3 while a single conductance value is currently assigned to all DRN cells representing streams.
The following chapters describe how to assign spatially varying conductances using PLPROC.
Several methods will be demonstrated. In all cases this will be done in a way that allows these
conductances to be adjusted using PEST or PEST++. At the end of each chapter, you can apply the
same steps as those outlined above to visualize the outcomes of each method.

All files generated so far can be found in the folder t1.

Conductance
1000

Reach

i
s

Figure 2 Plan view of the model grid DRN cells coloured according to conductance (top) and stream reach
number (bottom).

3. INTERPOLATING TO LINEAR FEATURES

This tutorial demonstrates several ways to interpolate from pilot points to DRN cells that represent a
polylinear feature such as a stream. In the present case, some of these streams are relatively straight
while others are a bit bendy.

The tutorial starts with “simple” pilot point interpolation without zonation. Then zonation is included to
distinguish between stream reaches. Lastly, SEGLISTS are introduced. These allow a more complex
methodology to be employed for pilot point to feature interpolation; this methodology is better for
handling bendy streams.

3.1 The Easy Way (Using Pilot Points)

We will start with “simple” pilot point to stream interpolation. In this case we will simply apply inverse
power of distance interpolation from pilot points to all reaches of a stream. For this, we need a set of
pilot points. We must also set up a PLPROC input file.

The Pilot Points

Pilot points would normally be digitised (ether manually or automatically) to create a “list file” — a type
of file that is easily read by PLPROC. (See other GMDSI tutorials for descriptions of how to build this
types of file.)

For the sake of expediency, pilot point identifiers, coordinates, and associated hydraulic property
values are provided in file drainpp.dat. Open this file using a text editor and take a look. You should
see four columns. Each row pertains to an individual pilot point; each pilot point has a unique identifier
(ppid), coordinates (easting and northing) and a value of drain conductance (draincond).

Where PEST is used for model calibration, a template of such a file should be constructed so that
PEST can transfer current parameter values to each pilot point prior to running the model. Under

9

these circumstances, PLPROC is run using a command issued in a batch file which PEST runs as
“the model”.

Figure 3 displays pilot points featured in drainpp.dat together with the value for drain conductance
assigned to each of them; part of the model grid is also shown. . Pilot point locations used here were
selected manually. Their placement was roughly in accordance with the following principles:

(a) Employ sufficient pilot points to follow the principles of highly parameterized inversion — i.e.,
we do not want parameter parsimony.

(b) Place pilot points close to the stream (although it does not need to be very precise).

(c) Ensure a higher density of pilot points where stream branches join. This prevents the
conductance in one branch from being influenced too much by the conductance of a pilot point
associated with another branch. (This is the main problem with the “simple” pilot point
approach).

For convenience, the conductance value for each pilot point was arbitrarily assigned an increasing
value according to position in the list (from 1 to 57).

* . + Pilot Points
<

drain conductance
o @ L 5 4 1

23

57

Figure 3 Model grid and locations of manually emplaced pilot points. Note the higher density of pilot points where
the three branches of the stream join.

The PLPROC Input File

This section demonstrates how to construct a PLPROC input file to interpolate from pilot points to the
model drain cells. We assume that you are at least somewhat familiar with PLPROC and its function;
nevertheless, while reading this section, you may benefit from having the PLPROC manual close at
hand. Other GMDSI tutorials go into greater detail on how to set up and use PLPROC scripts.

We must write a script which accomplishes the following five steps.

Read the model geometry;

Read the pilot point geometry;

Define how to interpolate from pilot points to model cells;
Undertake the interpolation;

5. Write hydraulic property values to model input files.

PR

Let’s get started.

5 Open an empty text file. Name it plproc_drainsl.dat and type in the function below to read model
grid specifications:

Cl mf6 = read mf6 grid specs (file=model.disv.grb, &
dimensions=3, &
slist layernum = layer, &
slist idomain = idomain)

10

https://gmdsi.org/education/tutorials/

6

This function tells PLPROC to create a CLIST (i.e a coordinate list) named cl_mf6, based on the
contents of the binary grid file model.disv.grb written by MODFLOW 6 Even though the
MODFLOW 6 model is of the DISV type, we have chosen to represent it (internally to PLPROC)
as a three-dimensional rather than two-dimensional grid. This function also creates ancillary
SLISTS for cell IDOMAIN values and LAYER numbers (although the latter are not relevant for the
current exercise). An SLIST (for “selection list” is a list of integer values that are commonly used
for identification of subgroups of an associated PLIST).

Next, we need to create an SLIST that identifies cells to which DRN boundary conditions have
been assigned. This SLIST is named draincells_mfs. This can be accomplished this using the
find_cells_in_lists() function. This function reads the MODFLOW 6 input file containing DRN data
(model.drn_stress_period_data_1.txt). Add the following function to the input file. (Cut and paste
from this document if that helps).

draincells mf6 = cl mf6.find cells in lists(
file=model.drn stress period data 1.txt,
model type=mf6 disv,
list col start=l1,
keytext start="'top of file',
keytext end='end of file')

2y 22 & &

Because the model_type is designated as “mf6_disv’, PLPROC knows that cells in this file are
identified by layer number and layer index (i.e. icpl). Because list_col_start is set to 1, it knows
that layer numbers are read from column 1 and that cell icpl values are read from columne 2.
Armed with this information, PLPROC reads all rows of file model.drn_stress_period_data_1.txt
to create a list of DRN cells. These are stored in an SLIST named draincells_mf6 for further use.

Now that we have read the model geometry and identified drain cells, we need to obtain the
locations of pilot points, and the conductance values that are associated with them. We can
accomplish this using the read_list_file() function. Add the following to the PLPROC input file:

cl pp = read list file(file='drainpp.dat',
id type='integer',
skiplines=1,
dimensions=2,
plist='draincond pp';column=4)

22 &2 2

10

11

Using data contained in the list file drainpp.dat, we have created a new CLIST for pilot points
named cl_pp. We have also created an associated PLIST (a PLIST is a “parameter list”) using
conductance values featured in the fourth column of the list file.

Next, we must create a PLIST associated with the model grid CLIST (cl_mf6). This is the PLIST
to which drain cell conductances will be interpolated from pilot points; however, as we will see
shortly, interpolation will only take place to cells in which a DRN boundary condition has been
emplaced in the MODFLOW 6 model. Add the following function to the PLPROC input file:

draincond mf6=new plist(reference clist=cl mf6,value=0.0)

12

Now we can interpolate conductance values from the pilot points PLIST to the model cells PLIST.
For simplicity, we shall employ inverse power of distance interpolation ; however, any interpolation
method could be used. Through use of the “selection equation” on the left side of this function,

11

interpolation takes place only to those model cells to which a DRN boundary condition has been
assigned. Add the following function to the PLPROC input file:

draincond mf6 (select=(draincells mf6.ne.0))=draincond pp.ivd interpolate 2d(&
transform='log', &
inv_power=2.0, &
min points=2, &
max_points=20, &
search radius=1.0e20)

13

Finally, we must write a new model input file containing model conductance values interpolated
from pilot points, these being contained in the draincond_mf6 PLIST. MODFLOW 6 will be directed
to read this new file when running a simulation. In our case, we use the replace_cells_in_lists()
function (see the PLPROC manual for further details on this function). Add the following function
to the PLPROC input file:

replace cells in lists(old file=model.drn stress period data 1.txt, &
new file=new model.drn stress period data 1.txt, &
model type=mf6 disv, &
list col start=1, &
keytext start='top of file', &
keytext end='bottom of file', &
plist=draincond mf6;column=4;action="'replace')
14 This function instructs PLPROC to write a new file named

15

16

new_model.drn_stress_period_data_1.txt, based on the original model DRN package file
(model.drn_stress_period_data_1.txt). Conductance values in the fourth column of the original file
are replaced by interpolated conductance values contained in the draincond_mf6 PLIST.

The argument model_type=mf6_disv used in the above function instructs PLPROC that the DRN
package input file pertains to a MODFLOW 6 model with a DISV grid. Hence, as stated above,
cells are defined by layer number and cell index (in that order). The list_col_start=1 argument
informs PLPROC that layer numbers reside in the first column of this file and (therefore implicitly)
that cell indices reside in the second column. As the list comprises the only contents of the file,
the keytext start and keytext_end arguments are set to ‘top_of file’ and ‘bottom_of file’
respectively. Finally, the plist argument specifies that the fourth column (4) must be modified
(replace) by values in the PLIST draincond_mf6.

Lastly, just for our own interest (and to check that we have done everything correctly), let us add
a reporting function to the PLPROC script. Add the following to the PLPROC input file:

cl mf6.report dependent lists(file='report.dat')

17

18

Great, we are now ready to run PLPROC for the first time. Make sure to save all changes in file
plproc_drainsl.dat..

Open a command prompt in your working folder. Execute PLPROC by typing: plproc
plproc_drainsl.dat and pressing <enter>. You should see the following:

12

Reading and storing contents of PLPROC script file plproc_drainsl.dat...
Processing commands in PLPROC script file...

cl mfé=read mf6 grid specs(file=model.disv.grb,dimensions=3,slist lay...
draincells mf6=cl mf6.find cells in lists(file=model.drn stress perio...
cl pp=read list file(file='drainpp.dat',6id type='integer',6 skiplines=1...
draincond mf6=new plist(reference clist=cl mf6,value=0.0)

draincond mf6 (select=(draincells mf6.ne.0))=draincond pp.ivd interpol...
replace cells in lists(old file=model.drn stress period data l.txt,ne...
cl mf6.report dependent lists(file='report.dat')

VvV V VYV YV YVYV

End of file: no more commands to process.

19 Check your working folder. You should have two new files:
new_model.drn_stress period_data_1.txt and report.dat. Open them both in a text editor and
take a look.

20 Now compare new_model.drn_stress_period_data_1.txt to the original DRN package input file
model.drn_stress_period_data_1.txt . Note how the structure is the same, however the values in
the fourth column of the new file have been altered by PLPROC.

21 Display these new DRN conductance values on a map to see the outcomes of the interpolation
process. Repeat the steps described in chapter 2.2 Viewing the Model. (Note that the provided
batch file will not work for the new files because of their new names). You should be able to display
something like this (Figure 4):

(a)
"I\‘-‘_\\ Pilot Points
dpr— =‘~ ‘ & L - 'O
drain conductance
e 1 r*—.‘\l_‘..l-'-‘ 1
23
57
(b) pilot point value

264 270 27.7

27.8 28.5

30.0 28.8 29.0

26.9 26.6 26.7 26.8 27.5 283 288 294 29.8 30.0 29.9 29.6 29.2 29.0 28.9

» o
» w

cell conductance decreases

Figure 4 (a) Model drain cells with spatially varying conductance values interpolated from pilot points; and (b)
expanded view of a section of reach 1 (labels designate pilot point and cell conductance values) to highlight issues
with this method.

As you can see in Figure 4a, interpolated conductances of model drain cells appear to match pilot
point conductances. However, a closer look at reach 1 (see Figure 4b) highlights an issue with this
approach. Figure 4b shows a close-up look of a section of reach 1, between two pilot points that have

13

conductance values of 29.0 and 30.0. We expect drain conductances to increase monotonically from
one pilot point all the way to the other (i.e., to increase steadily from 29.0 to 30.0). However, what
actually occurs is that drain conductance decreases with distance from both pilot points, reaching a
low-point midway between the two.

This discrepancy is caused by the influence of pilot points near reach 2 (which have lower
conductance values). As an infinite search radius was used during interpolation to avoid
discontinuities as points move in and out of the search distance, interpolated drain cell conductances
can be influenced by pilot points that are far away. The influence is small; in many cases this will not
matter too much. The following sections demonstrate alternative interpolation methods that avoid this
problem at the expensive of a slightly more complicated setup.

All files generated so far can be found in the folder t2. This folder also contains batch files (*.bat) that
automate the model display steps.

14

3.2 The Slightly Harder Way (Using Pilot Points and Zones)

To preclude pilot points in one reach from influencing cell conductances in other reaches, we can
associate pilot points with reach-specific groups of cells. One way to achieve this is by providing a
pilot point input file for each reach; at the same time, PLPROC must be informed of which cells belong
to which reach.

In the tutorial folder three pilot point files have been provided for you. These are named drainpp_1.dat,
drainpp_2.dat and drainpp_3.dat. The filename contains the respective stream reach number (e.g.,
drainpp_1.dat refers to reach 1). If you compare these files to the pilot point file used in the previous
chapter (drainspp.dat), you will see that pilot points have been divided amongst the new files
according to their proximity to each reach.

Additionally, where reach 1 and 2 meet reach 3, a pilot point from reach 3 is repeated in the pilot point
files pertaining to the other reaches. As you can see from Figure 5, this means that drainpp_1.dat
contains pilot point 37 and drainpp_2.dat contains pilot point 35. Pilot points 35 and 37 are also
included in file drainpp_3.dat. The conductance value associated with these two pilot points does not
have to be the same in each of the files. However, if the same value is used in each file, then
interpolated model conductances will not be discontinuous where the reaches meet (as happens for
reach 2 and 3 in Figure 4a). Another option is to associate different pilot point parameters with the
same point in each of the files, but tie the parameters tied to each other in the PEST control file. This
might not even be a concern. It depends on the case.

(@) 1.01:'.0 3.0
6070 80 ., 110139 & Pilot Point
aatl JiiEue * o # * . 1%0 4'0 Reach
: p 57.0 e :
2
20.021.0 22,0 - 3

(b)

Figure 5 (a) Stream reaches and pilot points; pilot points are labelled according to ppid number. (b) Close-up look
at the confluence of the reaches. Purple dotted circles highlight pilot points that are repeated in the respective pilot
point list files.

Now we need to set up a PLPROC input file that accounts for reach-specific interpolation. This file
will follow the same principles as the input file created in the previous chapter. Let us get started.

22 Create a new text file. Name it plproc_drains2.dat.

23 Repeat step 5 to create the model cell CLIST named cl_mf6.

15

24

25

Unfortunately, the original model file was set up in a way that cell stream reach numbers are
identified using a text string (e.g., stream-1, stream-2, etc.) in column 5 (see
model.drn_stress_period_data.txt). While these text strings were used by the modeller purely as
a convenience (it is easy to understand what they refer to), he/she could just as easily have used
an integer. However, PLPROC requires that this column contain only integers or real numbers,
so first we need to edit it. (Keep this in mind when setting up a MODFLOW model in a graphical
user interface of FloPy as it will reduce the need for later manual file alterations.)

Make a copy of the original file model.drn_stress_period_data.txt. Name the copy drains.txt. Open
drains.txt in a text editor and remove the sub-string “stream-“ from the 5" column. The first few
rows of the modified drains.txt file should now look like this:

1 2830 140.94892883 1000.00000000 1
1 2842 139.41760254 1000.00000000 1
1 2843 138.98307800 1000.00000000 1
1 2845 139.76692200 1000.00000000 1

26
27
28

Save drains.txt in your working folder and close it.
Now return to the input file plproc_drains2.dat.

Next create the SLIST for the drain cells (similar to step 7) using the find_cells_in_list() function
and the drains.txt list file. This time we need to populate the SLIST with cell reach numbers so
that we can distinguish between cells in different reaches. Type in the following function:

draincells mf6 = cl mf6.find cells in lists(
file=drains.txt,
model type=mf6 disv,
list col start=1,
assign col = 5,
keytext start="'top of file',
keytext end='bottom of file')

2 2y 22 &2 &2

29

30

As you can see, the major difference between use of the find_cells_in_list() function as used in
the present chapter and in the preceding chapter is the inclusion of the argument assign_col = 5.
If this argument is omitted, then model cells are assigned a value of 1 if they appear in the list,
and O if they do not. However the assign_col = 5 argument instructs PLPROC to assign cells
appearing in the list values that are read from column 5 of the list; these values are assigned to
the draincells._mf6 SLIST.

Now create three pilot point CLISTs; one for each pilot point file. Start with drainpp_1.dat. Type in
the following (or cut and paste from this document):

cl ppl = read list file(file='drainpp 1l.dat',
id type='integer',
skiplines=1,
dimensions=2,
plist='draincondl pp';column=4)

2 2 2

31

As you can see, this function call follows the same protocol as was used in the previous chapter
(see step 9). The read_list_file() function is used to read the pilot point file drainpp_1.dat to create
a CLIST (in this case cl_pp1) and an associated PLIST (drainconl_pp).

16

32 Do the same for the remaining two pilot point files (drainpp_2.dat and drainpp_3.dat). Name the
CLISTs cl_pp2 and cl_pp3 and the respective PLISTs draincond2_pp and draincond3_pp. The
function calls are as follows:

cl pp2 = read list file(file='drainpp 2.dat’',
id type='integer',
skiplines=1,
dimensions=2,
plist='draincond2 pp';column=4)

2 &2 &2

cl pp3 = read list file(file='drainpp 3.dat',
id type='integer',
skiplines=1,
dimensions=2,
plist="draincond3 pp';column=4)

2 &2 2

33 Next initialize the model drain conductance PLIST (see step 11).

draincond mfé6=new plist(reference clist=cl mf6,value=0.0)

34 Now we can interpolate conductance values from each of the three pilot point PLISTs to the model
cells PLIST. This step differs from that provided in the previous chapter in that interpolation is
reach-specific. Add the following lines to the PLPROC input file:

draincond mf6 (select=(draincells mf6.eq.1l))=
draincondl pp.ivd interpolate 2d(
transform="'log"',
inv_power=2.0,
min points=2,
max_ points=20,
search radius=1.0e20)

22 22 2 &2 &2 &

35 As you can see, this command is very similar to that used in the previous chapter. The main
difference is the design of the selection equation (select=(draincells_mf6.eq.1)). This specifies
that interpolation take place only to model cells for which elements in the draincells_mf6 SLIST
and have a value equal (.eq) to 1. Recall that this is the reach number.

36 Do the same for reachs 2 and 3 using the respective selection equations. Function calls are as
follows:

draincond mf6 (select=(draincells mf6.eq.2))=
draincond2 pp.ivd interpolate 2d(
transform='log',
inv_power=2.0,
min points=2,
max points=20,
search radius=1.0e20)

22 2 22 22 2 &

draincond mf6 (select=(draincells mf6.eq.3))=
draincond3 pp.ivd interpolate 2d(
transform="'log',
inv_power=2.0,
min points=2,
max_ points=20,
search radius=1.0e20)

22 22 22 R 2 &

17

37 Finally, repeat step 13 to write the PLIST of model drain conductances to a new model input file.
Name the new file new2_model.drn_stress_period_data_1.txt.

replace cells in lists(old file=model.drn stress period data 1.txt,
new file=new2 model.drn stress period data 1.txt,
model type=mf6 disv,
list col start=1,
keytext start="'top of file',
keytext end='bottom of file',
plist=draincond mf6;column=4;action="replace')

22 &2 2 2 R

38 Great, we are now ready to run PLPROC for the second time. Make sure to save all changes in
the plproc_drains2.dat PLPROC input file.

39 Open a command prompt in your working folder. Execute PLPROC by typing: plproc
plproc_drains2.dat and pressing <enter>. You should see the following:

draincond mf6 (select=(draincells mf6.eq.3))=draincond3 pp.ivd interpo...
replace cells in lists(old file=model.drn stress period data l.txt,ne...
cl mf6.report dependent lists(file='report.dat')

> cl mf6=read mf6 grid specs(file=model.disv.grb,dimensions=3,slist lay...
> draincells mfé6=cl mf6.find cells in lists(file=drains.txt,model type=...
> cl ppl=read list file(file='drainpp 1l.dat',id type='integer',6 skipline...
> cl pp2=read list file(file='drainpp 2.dat',id type='integer',6 skipline...
> cl pp3=read list file(file='drainpp 3.dat',id type='integer',6 skipline...
> draincond mfé6=new plist(reference clist=cl mf6,value=0.0)

> draincond mf6 (select=(draincells mf6.eq.1l))=draincondl pp.ivd interpo...
> draincond mf6 (select=(draincells mf6.eq.2))=draincond2 pp.ivd interpo...
>

>

>

End of file: no more commands to process.

40 Check your working folder. You should have two new files:
new2_model.drn_stress_period_data_1.txt and report.dat. Open them both in a text editor and
take a look.

41 Display these values on a map to see interpolation outcomes. Repeat the steps described in
chapter 2.2 Viewing the Model to display drain conductance. (Note that the provided batch file
will not work for the new files because of altered file names). You should be able to display
something similar to Figure 6.

Compare Figure 6b to Figure 4b; note how in Figure 6b model-based cell drain conductance values
change monotonically between pilot points. However, if you take a closer look at cell conductances
where the stream is bendy (see Figure 7) you will see that this method does not always respect the
stream profile. This may not be an issue in some modelling contexts. Nevertheless, it can be avoided
using the methodology described in the following chapter.

All files generated up to this point are in the t3 folder. The folder also contains batch files (*.bat) to
automate the model display steps.

18

2h Pilot Points
,1:0 ’%“ 46.0 M
16.0 . ;
14‘00 : . :4;9. 510 530540 570 drain conductance
5.0 B A B SPWE e ROh e d 1
a3® %90 *
240 250260 n: ’3. ¢ .
21.0 230 # > ‘e 220 300°¢
zgoizgo. e e % 23
57
(b) pilot point value
286 288 289
28.9 29.0 30.5 307
30.0
*
29.2 29.3 29.4 29.6 29.7 299 29.9 30.0 30.0 30.0 30.0 30.1 30.1 303 30.4
4l
-
cell conductance decreases

Figure 6 (a) Model drain cells with spatially varying conductance values interpolated from reach-specific pilot
points; and (b) expanded view of a section of reach 1 (labels designate pilot point and cell conductance values).

46.0
45.7, 45.9 %‘0 46.0 46.0
45.3/45.6 46.1 46.4
2
4491 45.0 2 O
449 46.8
420 46.5
4.9 H 46.3146.3
447 46.3 ‘
442443 46.5 "-.‘
439 6.8
439 473 497
44.0 47.7 ' 49.4
43.9 439 ’\ 47.9‘48.0 ',‘: 48.7/49.0
435 la78] 48.5
43.1 -.:1;.-4-.-47.4 48.1148.3
42,6 42.8 47.247.5 48.0.48.0
42.6 47.6148.1 48.448.2 1 48.0
3B 48.348.8 ‘%“ 48.9148.5
42.8’42.9
38.0 42.3
Figure 7 Close-up view of model drain cells with spatially varying conductance values interpolated from reach-
specific pilot points; (labels designate pilot point and cell conductance values).

19

3.3 Using SEGLISTS to Respect Stream Geometry

Suppose that we have really bendy streams (similar to reach 3) and that we want to do linear
interpolation along the profile of these streams between pilot points. (By “linear” we mean with respect
to distance along the stream, regardless of its curviness) with interpolation taking place between only
two pilot points at a time.) To accomplish this, links between pilot points and stream segments, as
well as the ordering of pilot points and segments, must be registered with PLPROC. So, for every
model drain cell we need to know the two pilot points from which interpolation takes place. This is
where SEGLISTS come in.

The use of SEGLISTS requires a slightly different approach than the more generic use of pilot points
described in previous chapters. This workflow requires two new steps: (1) defining the geometry of
the SEGLISTS and (2) generating appropriately-placed pilot points from the SEGLISTS.

PLPROC needs to be informed of the geometry of the polylinear features (e.g., the streams) to which
interpolation from pilot points must take place, as well as how to break these features up into
segments. This is accomplished with a SEGLIST (which will be described further on). The size and
spacing of segments comprising a SEGLIST should reflect the propensity for heterogeneity in model
parameters (in this case DRN conductances). Segment design also needs to account for connections
and connections between different linear features (for example, the confluence of two streams).

Once a SEGLIST has been created from a group of juxtaposed segments, PLPROC can generate a
family of pilot points located at segment joins and at either end of the group of joined segments.
PLPROC is clever enough to arrange things so that the same pilot point can serve more than one
segment where they join, this making setup more efficient. After building the SEGLIST and associated
pilot points, interpolation to model cells is accomplished in a similar fashion to that described in
previous chapters.

Let us get started.

Building the SEGLIST

A SEGLIST is a set of segments. Each segment is a polyline defined by a set of vertices (e.g., a set
of coordinates). A segment begins at the first vertex of the vertex list that is attributed to a segment
and ends at the last vertex in the list. Each segment within a SEGLIST has a name (of 20 characters
or less in length).

Vertices for the streams which feature in our model have been provided in the tutorial folder in a file
named seglists.csv. These were obtained simply by defining stream polyline vertices in QGIS and by
saving them as a CSV file. They could just as easily have been digitized manually or generated at
specified intervals along the stream polyline. The spatial density of these vertices should be greater
than the desired spatial density of pilot points. Furthermore, it is convenient to place a vertex where
linear features join or intersect.

¢ Vertex
streams

Figure 8 Stream polyline and vertices used to build SEGLISTS. Vertices are labelled by index number.

20

PLPROC reads SEGLIST vertex coordinates and names from a segment file, called a “SEGFILE” for
short. Now that we have all the vertex coordinates, they need to be grouped into segments in a
SEGFILE. How to group the vertices into segments is up to the modeller. He/she should keep in mind
that a pilot point will exist at the beginning and end of each segment. It is also convenient for segment
endpoints to coincide with points where polylinear features such as streams join or intersect.

An example SEGFILE (named sedfile.dat) is provided in the tutorial folder. A segment file can adopt
either of two protocols, namely “block” or “table”. segdfile.dat employs the “table” protocol as it is easier
to manipulate and display data contained in this file in GIS software. See the PLPROC manual for
further details. Open sedfile.dat in a text editor or spreadsheet package and take a look.

Note that each segment within a SEGLIST is identified by a unique name in the segid column.
Segment vertices are ordered sequentially. Where segments join, the last vertex of the one segment
is repeated as the first vertex of the adjoining segment. Figure 9 displays stream vertices colour coded
according to their assigned segment. As you can see in Figure 9b, where three segments join, the
vertex at which the join occurs is repeated in each of the adjoining segments.

(a) (b) *

Figure 9 (a) All stream vertices grouped according to segment, and (b) a close-up look at the intersection of three
segments. (Model drain cells are coloured according to stream reach).

Now that we have a SEGFILE that contains SEGLISTS, we can use PLPROC to generate a family of
pilot points located at segment joins. We could also generate these pilot points ourselves if we really
wanted to — but because PLPROC can do the hard work, let us make use of it. To get started, we
need to build a PLPROC input file.

42 Open a new text file in your text editor of choice. Name the new file plproc_drains3.dat.

43 As in previous chapters, start by creating a model cell CLIST. Use the following function.

cl mf6 = read mf6 grid specs(file=model.disv.grb, &
dimensions=3, &
slist layernum = layer, &
slist idomain = idomain)

44 Next, create a SEGLIST named sl_drains, by reading the provided SEGFILE (sedfile.dat) using
PLPROC's read_sedfile() function. Insert the following function into the PLPROC script.

sl drains = read segfile(file="segfile.dat")

45 Next, instruct PLPROC to create a CLIST for pilot points, using the sl_drains SEGLIST as its base.
Nodes of this CLIST will be created at the ends of each segment of the SEGLIST. This is

21

accomplished using the create_clist from_seglist() function. Type in the function as follows (or
copy and paste from this document.)

cl drainpp = create clist from seglist (seglist=sl drains, &
linkage type=endpoints, &
dist thresh=10.0)

46

47

48

This function creates a CLIST named cl_drainpp, based on the SEGLIST named sl_drains. The
argument linkage_type specifies the nature of SEGLIST-to-CLIST linkage. Linkages can be
endpoints or midpoint. If linear interpolation along each segment is desired (as in our case), then
endpoints is preferred option. If a single piecewise constant value per segment is desired, then
the midpoint option should be used. See the PLPROC manual for more details.

If endpoints are used as the linkage_type, then a value for the dist_thresh argument must be
provided. If the ends of two or more segments are separated by less than dist_thresh, only a
single CLIST element (i.e. a pilot point in this case) is created; this is linked to all SEGLIST
segments which terminate at, or close to, that point. In our case, if the endpoints of two segments
are less than 10 m apart, the same pilot point is used for both segments. This allows properties
interpolated from pilot-point-interpolated parameters to vary continuously between connected
segments.

Optionally, we can access details on the newly-created set of pilot points by instructing PLPROC
to report on the cl_drainpp CLIST. Do this by inserting the following function into the PLPROC
script.

cl drainpp.report dependent lists(file='report.dat')

We can now build a pilot point list file by running PLPROC and editing the contents of report.dat.

49
50

Save plproc_drains3.dat.

Open the command line in your working folder, type plproc plproc_drains3.dat and press <enter>.
If all went well, you should see something like the following.

Reading and storing contents of PLPROC script file delete.dat...
Processing commands in PLPROC script file...

cl mfé6=read mf6 grid specs(file=model.disv.grb,dimensions=3,slist lay...
sl drains=read segfile(file="segfile.dat")

cl drainpp=create clist from seglist(seglist=sl drains,linkage type=e...
cl drainpp.report dependent lists(file='report.dat')

vV V V V

End of file: no more commands to process.

Generating the Pilot Points

File report.dat should now exist in your working folder. Open it in a text editor and take a look. You
should see four columns, the last two of which are X and Y coordinates. These are the locations of
CLIST elements (pilot points in our case). Now we can create a pilot point list file by simply copying
from report.dat. We don’t need to record pilot point X and Y coordinates in this file as we did in
previous pilot point list files. We will ask PLPROC to read the contents of this file into an existing
CLIST (i.e. the CLIST created as above).

22

51 Open a new blank file in either a text editor or spreadsheet package. Name it draincond.dat.

52 Copy the values in the first column of report.dat (the column named “Index”) into file draincond.dat.
Name this column “ID”.

53 Create a second column named “drain_conductance”. Fill this column with whatever values you
like. Once you are done, the first few rows of your file should look something like this:

D drain_conductance
10
20
40
55

DS N H

54 The file draincond.dat is a list file which contains pilot point identifiers in the first column (ID) and
conductance values in the second column (drain_conductance).

At this stage, all of the files needed for the final PLPROC script are ready. The following steps for
setting up the PLPROC input file are similar to those provided in the previous chapters.

55 Open plproc_drains3.dat in your text editor again.

56 Instruct PLPROC to read the draincond.dat list file to obtain conductance values at pilot points by
inserting the following function into the PLPROC script.

read list file(reference clist='cl drainpp',skiplines=1, &
file='draincond.dat', &
plist="pp draincond';column=2)

57 Next, instruct PLPROC to build an SLIST of model drain cells to which interpolation must take
place (similar to step 11).

draincells mf6 = cl mf6.find cells in lists(
file=model.drn stress period data 1.txt,
model type=mf6 disv,
list col start=1,
keytext start="'top of file',
keytext end='end of file')

2 2 22 2 &

58 Now calculate interpolation factors to these model cells through linear interpolation along the
segments. (This function needs to be run only once because linear interpolation factors are
independent of the values of quantities which they interpolate. In practice, when incorporated into
a PEST/PEST++ workflow, it would usually be run once and then commented out.)

calc_linear interp factors(source clist=cl drainpp,

file="factors draincells.dat",
search radius=100)

&

target clist=cl mf6;select=(draincells mf6.ne.0), &

&

59 Initialize the drain conductance PLIST.

draincond mf6=new plist(reference clist=cl mf6,value=0.0)

23

60 Undertake interpolation using the interp_using_file() function.

draincond mf6=pp draincond.interp using file(file=factors draincells.dat, &
transform=1log)

61 And finally, write the values in to a model input file.

replace cells in lists(old file=model.drn stress period data 1.txt,
new file=new3 model.drn stress period data 1.txt,
model type=mf6 disv,
list col start=1,
keytext start="'top of file',
keytext end='bottom of file',
plist=draincond mf6;column=4;action="replace')

22 22 22 &2 &2 &

Great. We are now ready to run PLPROC for the last time. Make sure to save all changes in the
plproc_drains3.dat PLPROC input file.

62 Open a command prompt in your working folder. Execute PLPROC by typing: plproc
plproc_drains3.dat and pressing <enter>. You should see the following:

Reading and storing contents of PLPROC script file plproc drains3.dat...
Processing commands in PLPROC script file...

cl mfé=read mf6 grid specs(file=model.disv.grb,dimensions=3,slist lay...
sl drains=read segfile(file="segfile.dat")

cl drainpp=create clist from seglist(seglist=sl drains,linkage_ type=e...
cl drainpp.report dependent lists(file='report.dat')

read list file(reference clist='cl drainpp',skiplines=1,file='drainco...
draincells mf6=cl mf6.find cells in lists(file=model.drn stress perio...
calc linear interp factors(source clist=cl drainpp,target clist=cl mf...
draincond mfé6=new plist(reference clist=cl mf6,value=0.0)

draincond mfé=pp draincond.interp using file(file=factors draincells....
replace cells in lists(old file=model.drn stress period data 1l.txt,ne...

VVVVVVYVYVYVYV

End of file: no more commands to process.

63 Check your working folder. You should have two new files:
new3_model.drn_stress_period_data_1.txt and factors_draincells.dat. Open them both in a text
editor and take a look.

64 Display the new model drain cell conductance values on a map to see the outcome of the
interpolation. Repeat the steps described in chapter 2.2 Viewing the Model to display drain
conductance. (Note that the provided batch file will not work for the new files). You should be able
to display something similar to Figure 10 (your drain conductance values will depend on what
conductance values you assigned to pilot points in step 53; they will probably be different from
those displayed below).

24

@) L @ seglist pilot points
1304‘1-. $10 40 drailraconductance
& ¢ g & = i
o & 0| |60
0 ffgzo ¢’ Jq JH
&9 & ¢ % "84y, 0 400 agi 130
(b) &
&° &
JO
&0
éU
‘10_1_—H20
0
¢ &° &° &0

Figure 10 Model drain cells with linearly varying conductance values interpolated from SEGLISTS; (labels indicate
SEGLIST pilot point conductance values).

Great job, you have completed the interpolation to linear features tutorial. We hope you found it useful!
Why don’t you experiment with using the midpoint linkage type (see step 45) to see how interpolation
outcomes differ?

All files generated up to this point can be found in the folder t4. The folder also contains batch files
(*.bat) to automate the model display steps.

25

ogmdsit

Groundwater Modelling
Decision Support Initiative

gmdsi.org

CRICOS NO 001144

NATIONAL CENTRE FOR

GROUNDWATER

g RESEARCH AND TRAINING

