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Preface  
The Groundwater Modelling Decision Support Initiative (GMDSI) is an industry-funded and 
industry-aligned project focused on improving the role that groundwater modelling plays in 
supporting environmental management and decision-making. Over the life of the project, it will 
document a number of examples of decision-support groundwater modelling. These 
documented worked examples will attempt to demonstrate that by following the scientific 
method, and by employing modern, computer-based approaches to data assimilation, the 
uncertainties associated with groundwater model predictions can be both quantified and 
reduced. With realistic confidence intervals associated with predictions of management 
interest, the risks associated with different courses of management action can be properly 
assessed before critical decisions are made.  

GMDSI worked example reports, one of which you are now reading, are deliberately different 
from other modelling reports. They do not describe all of the nuances of a particular study site. 
They do not provide every construction and deployment detail of a particular model. In fact, 
they are not written for modelling specialists at all. Instead, a GMDSI worked example report 
is written with a broader audience in mind. Its intention is to convey concepts, rather than to 
record details of model construction. In doing so, it attempts to raise its readers’ awareness of 
modelling and data-assimilation possibilities that may prove useful in their own groundwater 
management contexts. 

The decision-support challenges that are addressed by GMDSI worked examples include the 
following: 

• assessing the reliability of a public water supply;  
• protection of a groundwater resource from contamination;  
• assessment of mine dewatering requirements; 
• assessing the environmental impacts of mining; and  
• management of aquifers threatened by salt water intrusion.  

In all cases the approach is the same. Management-salient model predictions are identified. 
Ways in which model-based data assimilation can be employed to quantify and reduce the 
uncertainties associated with these predictions are reported. Model design choices are 
explained in a way that modellers and non-modellers can understand.  

The authors of GMDSI worked example reports make no claim that the modelling work which 
they document cannot be improved. As all modellers know, time and resources available for 
modelling are always limited. The quality of data on which a model relies is always suspect. 
Modelling choices are always subjective, and are sometimes made differently with the benefit 
of hindsight.  

What we do claim, however, is that the modelling work which we report has attempted to 
implement the scientific method to address challenges that are typical of those encountered 
on a day-to-day basis in groundwater management worldwide. 

As stated above, a worked example report purposefully omits many implementation details of 
the modelling and data assimilation processes that it describes. Its purpose is to demonstrate 
what can be done, rather than to explain how it is done. Those who are interested in technical 
details are referred to GMDSI modelling tutorials. A suite of these tutorials is being developed 
specifically to assist modellers in implementing workflows such as those that are described 
herein.  
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Glossary 
Anisotropy 
A condition whereby the properties of a system (such as hydraulic conductivity) are likely to 
show greater continuity in one direction than in another. At a smaller scale it describes a 
medium whose properties depend on direction. 

Bayesian analysis 
Methods that implement history-matching according to Bayes equation. These methods 
support calculation of the posterior probability distribution of one or many random variables 
from their prior probability distributions and a so-called “likelihood function” – a function that 
increases with goodness of model-to-measurement fit. 

Boundary condition 
The conditions within, or at the edge of, a model domain that allow water or solutes to enter 
or leave a simulated system. 

Boundary conductance 
The constant of proportionality that governs the rate of water movement across a model 
boundary in response to a head gradient imposed across it. 

Time-variant specified head (CHD) package 
A Dirichlet (i.e. “fixed head”) boundary condition implemented by MODFLOW in which the 
head can vary with time on a stress-period-by-stress-period basis. 

Covariance matrix 
A matrix is a two-dimensional array of numbers. A covariance matrix is a matrix that specifies 
the statistical properties of a collection of random variables - that is, the statistical properties 
of a random vector. The diagonal elements of a covariance matrix record the variances (i.e. 
squares of standard deviations) of individual variables. Off-diagonal matrix elements record 
covariances between pairs of variables. The term “covariance” refers to the degree of 
statistical inter-relatedness between a pair of random variables. 

Ensemble 
A collection of realisations of random parameters. 

Drain (DRN) package 
A one-way Cauchy boundary condition implemented by MODFLOW. Water can flow out of a 
model domain, but cannot enter a model domain through a DRN boundary condition.  

Evapotranspiration (EVT) package 
MODFLOW’s implementation of water withdrawal from a groundwater system whereby the 
extraction rate can increase, up to a user-supplied maximum, as the head approaches a user-
prescribed level from below.  

General head boundary (GHB) package 
This is MODFLOW parlance for a Cauchy boundary condition. Water flows into or out of a 
model domain in proportion to the difference between the head ascribed to the boundary and 



 

 
 

that calculated for neighbouring cells. The rate of water movement through the boundary in 
response to this head differential is governed by the conductance assigned to the boundary. 

Hydraulic conductivity 
The greater is the hydraulic conductivity of a porous medium, the greater is the amount of 
water that can flow through that medium in response to a head gradient.  

Jacobian matrix 
A matrix of partial derivatives (i.e. sensitivities) of model outputs (generally those that are 
matched with field measurements) with respect to model parameters.  

Matrix 
A two-dimensional array of numbers index by row and column. 

MODFLOW 
A family of public-domain, finite-difference groundwater models developed by the United 
States Geological Survey (USGS). 

MODFLOW package 
An item of simulation functionality that describes one aspect of the operation of a groundwater 
system, for example recharge or a boundary condition. The word “package” describes the 
computer code that implements this functionality, as well as its input and output file protocols. 

Null space 
In the parameter estimation context, this refers to combinations of parameters that have no 
effect on model outputs that are matched to field observations. These combinations of 
parameters are thus inestimable through the history-matching process. 

Objective function 
A measure of model-to-measurement misfit whose value is lowered as the fit between model 
outputs and field measurements improves. In many parameter estimation contexts the 
objective function is calculated as the sum of squared weighted residuals. 

Parameter 
In its most general sense, this is any model input that is adjusted in order to promulgate a 
better fit between model outputs and corresponding field measurements. Often, but not 
always, these inputs represent physical or chemical properties of the system that a model 
simulates. However there is no reason why they cannot also represent water or contaminant 
source strengths and locations. 

Phreatic surface 
The water table. 

Pilot point 
A type of spatial parameterisation device. A modeller, or a model-driver package such as 
PEST or PEST++, assigns values to a set of points which are distributed in two- or three-
dimensional space. A model pre-processor then undertakes spatial interpolation from these 
points to cells comprising the model grid or mesh. This allows parameter estimation software 
to ascribe hydraulic property values to a model on a pilot-point-by-pilot-point basis, while a 
model can accept these values on a model-cell-by-model-cell basis. The number of pilot points 
used to parameterize a model is generally far fewer than the number of model cells. 



 

 
 

Prior probability 
The pre-history-matching probability distribution of random variables (model parameters in the 
present context). Prior probability distributions are informed by expert knowledge, as well as 
by data gathered during site characterisation. 

Posterior probability 
The post-history-matching probability distribution of random variables (model parameters in 
the present context). These probability distributions are informed by expert knowledge, site 
characterisation studies, and measurements of the historical behaviour of a system.  

Probability density function 
A function that describes how likely it is that a random variable adopts different ranges of 
values. 

Probability distribution 
This term is often used interchangeably with “probability density function”. 

Quadtree mesh refinement 
This term refers to a means of creating fine rectilinear model cells from coarse rectilinear 
model cells by dividing them into four. Each of the subdivided cells can then be further 
subdivided into another four cells. However it is a design specification of a quadtree-refined 
grid that no cell within the domain of a model be connected to more than two neighbouring 
cells along any one of its edges. 

Realisation 
A random set of parameters. 

Regularisation 
The means through which a unique solution is sought to an ill-posed inverse problem. 
Regularisation methodologies fall into three broad categories, namely manual, Tikhonov and 
singular value decomposition. 

Residual 
The difference between a model output and a corresponding field measurement. 

Singular value decomposition (SVD) 
A matrix operation that creates orthogonal sets of vectors that span the input and output 
spaces of a matrix. When undertaken on a Jacobian matrix, SVD can subdivide parameter 
space into complementary, orthogonal subspaces; these are often referred to as the solution 
and null subspaces. Each of these subspaces is spanned by a set of orthogonal vectors. The 
null space of a Jacobian matrix is composed of combinations of parameters that have no effect 
on model outputs that are used in its calibration, and hence are inestimable. 

Solution space 
The orthogonal complement of the null space. This is defined by undertaking singular value 
decomposition on a Jacobian matrix. 

Specific storage 
The amount of water that is stored elastically in a cubic metre a porous medium when the 
head of water in which that medium is immersed rises by 1 metre. 



 

 
 

Specific yield 
The amount of accessible water that is stored in the pores of a porous medium per volume of 
that medium. 

Stochastic 
A stochastic variable is a random variable. 

Stress 
This term generally refers to those aspects of a groundwater model that cause water to move. 
They generally pertain to boundary conditions. User-specified heads along one side of a model 
domain, extraction from a well, and pervasive groundwater recharge, are all examples of 
groundwater stresses. 

Stress period 
The MODFLOW family of models employs this terminology to describe each member of a 
series of contiguous time intervals that collectively comprise the simulation time of a model.  

Tikhonov regularisation 
An ill-posed inverse problem achieves uniqueness by finding the set of parameters that 
departs least from a user-specified parameter condition, often one of parameter equality and 
hence spatial homogeneity. 

Vector 
A collection of numbers arranged in a column and indexed by their position in the column. 



 

 
 

Executive Summary 
Groundwater flows through an unseen, heterogeneous medium. Sources and locations of its 
recharge and discharge are often only vaguely known. Numerical simulation of groundwater 
movement and processes is therefore inexact. Nevertheless, if properly implemented, 
numerical simulation can provide a uniquely powerful mechanism for supporting the 
management of groundwater systems. 

A numerical model cannot predict the future behaviour of groundwater under an existing or 
altered management regime. However it can bracket a prediction of this behaviour within 
uncertainty limits that reflect all currently available knowledge of the groundwater system. This 
knowledge includes that which is available through site characterisation and hydrogeological 
mapping, as well as that which is available from present and historical measurements of 
system behaviour. To achieve its decision-support potential, the modelling process must be 
capable of assimilating these two different kinds of information in order to reduce the 
uncertainties of management-critical predictions. It must also be capable of informing 
managers of the uncertainties that remain after assimilation of this information has taken 
place. 

These decision-support imperatives create conflicting demands on groundwater model 
design. On the one hand, a model must possess sufficient complexity to represent system 
processes and properties to which predictions of management interest may be sensitive. 
Furthermore, because these processes and properties are often only vaguely known, they 
must be represented stochastically. On the other hand, a groundwater model should run 
quickly and be numerically stable. This is because fulfillment of its data assimilation and 
uncertainty analysis responsibilities requires that the model be run many times under the 
control of software that facilitates flow of information from field measurements and expert 
knowledge to the model, and then from the model to decision-critical predictions. It follows that 
model design must eschew redundant complexity in order to facilitate passage of information 
into and out of the model. At the same time it must ensure that complexity retained by the 
model is sufficient to provide receptacles for outside information, and to quantify uncertainties 
that arise from a deficit of such information.  

Design of a decision-support groundwater model is therefore a compromise. While the model 
itself may be “physically based”, some boundary conditions may embody abstract 
representations of complex processes and properties whose details are purposefully omitted 
from the model in order to reduce its run time and enhance its numerical health. However a 
modeller, as well as those who are affected by decisions that are supported by a model, must 
be sure that strategic model simplification undertaken in this way does not impair a model’s 
decision-support integrity.  

Inappropriate simplicity can impair a model’s decision-support potential in three ways. 

1. If a model is too simple, it cannot replicate the historical behaviour of the system that 
it attempts to simulate. It is therefore incapable of assimilating information that is 
resident in this behaviour.  

2. Removal from a model of properties and processes to which a prediction is sensitive 
may reduce its capacity to associate a valid uncertainty interval with that prediction. 
This, in turn, impairs the ability of the modelling process to assess the risks 
associated with contemplated courses of management action. 

3. Model simplifications may bias certain decision-critical model predictions. 
Paradoxically, potential errors in these predictions that are incurred by model  



 

 
 

simplicity may be exacerbated by attempts to lower predictive uncertainty through 
history-matching. 

The last two of these unwanted outcomes of model simplification may not be easy to detect, 
both during calibration of the model, and during subsequent deployment of the model to make 
predictions. However if the action of the model on its parameters is represented, through 
model linearisation, as the action of a matrix on a vector, all three of these potential impacts 
can be investigated.  

Linear analysis requires firstly that model constructs that constitute potential sources of 
predictive error (for example questionable boundary conditions) be endowed with adjustable 
parameters that characterize possible errors in their representation of unsimulated processes. 
Next, the sensitivities of model outcomes to these, and other, model parameters must be 
computed. This normally requires that the model be run many times; during each of these 
runs, one of its parameters is varied incrementally. Finally, calculations embodied in matrix 
equations are made to assess all three of the above potential impacts of inappropriate model 
simplification. 

This process is illustrated using a model that was built to evaluate ongoing extraction from two 
wellfields that are situated near the south western margin of the Great Artesian Basin. This 
report discusses methodologies and public domain software that were used in this 
investigation, and provides a few details of how this study was done. 

The study focusses on a number of boundary conditions that were assigned to this model. 
Linear analysis establishes that the potential for bias instilled in management-salient 
predictions by simplifications embodied in these boundary conditions is small in comparison 
with the uncertainties of these predictions. It is further established that the model’s ability to 
quantify these uncertainties is virtually unimpaired by present boundary condition design.  

The study that is documented herein also demonstrates the importance of endowing model 
features such as these boundaries with flexible, adjustable parameters that allow potential 
errors in their design to contribute to the assessed uncertainties of decision-critical  
predictions, while minimizing their potential to bias them. This principle is embodied in the 
design of a model which replaces that which is the subject of the present report. 
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1. INTRODUCTION 
1.1 General 
It was George Box, the famous British statistician, who first coined the often-repeated phrase 
that “all models are wrong but some are useful”. While undoubtedly true in the groundwater 
modelling context, this statement is not in itself very useful, as it does not define “useful”. Nor 
does it provide a basis for evaluating the utility (or otherwise) of a particular model – a matter 
which is often the subject of heated debate by competing experts. 

Another common phrase – a phrase that adorns the executive summaries of many, if not most, 
modelling reports - is that a model should be viewed as “fit for purpose”. However the words 
“fit” and “purpose” are seldom, if ever, defined. Presumably this phrase implies that use of the 
model in support of groundwater management will not precipitate the making of a wrong 
decision. However rarely is model fitness expressed in such direct terms. Even more rarely is 
justification for its fitness provided. 

In this GMDSI worked example report, we demonstrate how linear analysis can be used to 
explore whether a groundwater model can indeed be useful while being wrong, and under 
what circumstances it can actually be described as being “fit for purpose”. However, before 
doing this, we explore the metrics on which these descriptions must rest. 

1.2 Conceptual and Numerical Models 
A numerical model comprises an abstract, simplified representation of a complex, natural 
reality. In doing so, it gives numerical voice to an underlying conceptual model.  

A conceptual model is a cognitive device for identifying what is important (and implicitly what 
is unimportant) to the operation of a natural system. It supports dissection of a complex system 
into a finite number of parts which can be individually understood. Once these parts are 
identified, calculations can focus on how they interact.  

In the groundwater management context, the basis of a conceptual model often includes at 
least some of the following premises. 

• The importance of system boundary specifications diminishes with distance from the 
focus of management interest. 

• The direction and amount of groundwater flow is dominated by certain recharge 
processes and certain discharge processes.  

• The interaction of groundwater with processes that prevail at the land surface can be 
characterized by relatively simple equations. Though approximate, errors arising from 
their use are small. 

• The medium through which groundwater flows can be subdivided into a number of 
discrete geological units. These form a basis for characterizing the hydraulic 
properties of the system. 

• An adequate description of vertical groundwater movement rests on subdivision of 
the groundwater domain into a discrete number of layers. These layers are often 
based on stratigraphy. 

The details and nuances of natural processes are, of course, far more complex than can be 
expressed by a conceptual model, and are far too detailed for replication by a numerical 
model. However, this does not erode the benefits of numerical simulation, especially if a model 
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is employed to explore the large scale repercussions of system management rather than its 
details. Just as importantly, numerical simulation can provide a unique basis for assimilation 
of information that is encapsulated in historical measurements of groundwater status and 
behaviour. This information often pertains to the scale at which management-salient 
predictions must be made – a scale that eclipses nuances of system behaviour that are 
unimportant for system management. The uncertainties of decision-critical model predictions 
can often be reduced through assimilation of this information. For a model to assimilate the 
information that is contained in historical measurements of system states and fluxes, it must 
be capable of reproducing them, at least approximately. This, as much as anything else, 
defines the importance of numerical simulation for environmental decision-support. 

So how much do the simplifications embodied in construction of a conceptual model matter? 
And how much do the approximations encapsulated in numerical simulation matter? They 
matter if they erode a model’s ability to support the making of decisions that management of 
a system requires. 

1.3 System Management 
Ideally, management of a groundwater system should promulgate beneficial use of that 
system while forestalling the occurrence of unwanted events, particularly those that are 
suffered by environmental assets. Conceptually, by simulating a system numerically, the 
efficacy of a particular management strategy in achieving these outcomes can be tested 
before it is actually implemented. 

Unfortunately, groundwater models cannot simulate groundwater behaviour very well. Any 
prediction that is made by a groundwater model is accompanied by uncertainty. Depending 
on the prediction, this uncertainty may be considerable. Much of this uncertainty arises from 
the fact that the hydraulic properties of media through which groundwater flows are 
heterogeneous and variable (sometimes over orders of magnitude). The magnitudes of 
system drivers such as recharge are also often only poorly known. So too are facets of the 
conceptual model on which a numerical model is based.   

Predictive uncertainty does not erode a model’s ability to support environmental management 
unless the model is used in a way that ignores this uncertainty. Nor should predictive 
uncertainty be construed as a model’s fault; it is an outcome of information inadequacy. It is 
not a model’s task to overcome this inadequacy. In contrast, it is a model’s task to quantify the 
repercussions of this inadequacy as it pertains to predictions on which system management 
rests. Management of the system can then account for the risks that attend information 
inadequacy, and incorporate precautions that accommodate these risks. 

With this in mind, the goals of decision-support modelling can now be defined. These are to: 

• make predictions of management interest; 
• quantify the uncertainties associated with these predictions; 
• reduce these uncertainties through assimilation of pertinent data. 

These, then, are the “purposes” for which a groundwater model must be “fit”. These must be 
reflected in the specifications of a model whose predictions are necessarily “wrong” while the 
model itself remains “useful”. 

1.4 Seeking Purpose 
A model is able to quantify the uncertainty of a decision-critical prediction only if it represents 
characteristics and properties of a natural system in ways that embody their partially known 
status. When it is used to make a prediction, it may need to make that prediction many times, 
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each with a different realisation of these characteristics and properties. To make matters more 
complicated, these characteristics and properties must be constrained such that they allow 
the model to replicate historical system behaviour while still reflecting their partially-known 
status. The repetitive making of management-salient predictions, and the imposition of 
constraints on partially-known model characteristics and properties, are model-run-intensive 
procedures. They require that a model runs quicky; they also requires that it be numerically 
stable. Both of these qualities are abetted by simplicity of model design. 

At the same time, a modeller must include in his/her model, in either an explicit or abstract 
way, all aspects of a system which he/she considers may contribute to the uncertainty of a 
decision-critical prediction. Integrity of uncertainty assessment is therefore abetted by 
complexity of model design. This is especially the case if a model is required to make many 
different predictions. 

Because of these two conflicting requirements, the design of a decision-support numerical 
model must be a compromise. A model cannot serve the imperatives of decision-support if it 
is too simple to quantify the uncertainties of decision-critical predictions. Nor can it serve these 
imperatives if it is too complex to assimilate data which can reduce these uncertainties.  

A numerical model can possess many moving parts. A modeller is called upon to make many 
design decisions that pertain to these parts. He/she must decide which parts to include, which 
parts to exclude, and which parts to represent in a simplistic or abstract manner. These 
decisions are subjective. Some are debatable. All of them must be defensible.  

Defence of any aspect of model design must ultimately address its ability to support the goals 
of decision-support modelling that are set out above. These pertain to quantification and 
reduction of the uncertainties of decision-critical predictions. Model design justification 
therefore requires methodologies for rapid, approximate quantification of predictive 
uncertainty, for assessment of contributions made to this uncertainty by different parts of a 
model, and for identifying, and then avoiding, design simplifications that may introduce 
unquantifiable bias to decision-critical model predictions. 

1.5 The Present Worked Example 
The GMDSI worked example which is the subject of the present report shows how linear 
analysis can be used to explore the integrity of model design. 

The model on which this report is based was commissioned by BHP. It was built in 2015 to 
evaluate changes to hydrogeological conditions along the south western margin of the Great 
Artesian Basin (GAB) caused by groundwater extraction near this margin. Water is extracted 
from GAB aquifers by BHP to satisfy the requirements of its Olympic Dam mine. The model 
was updated in 2019 in order to provide a superior numerical basis for re-assessing water 
supply security and potential risks to springs which are sustained by artesian water. The 
improved model retains much of the conceptual basis of the existing model. However, its 
parameterisation was revised in order to enhance its ability to assimilate newly acquired 
information. At the same time, its ability to quantify post-data-assimilation uncertainties of 
management-critical predictions, particularly those pertaining to pumping-induced 
depressurisation beneath springs, was enhanced. 

Prior to model enhancement, some effort was devoted to examining whether reliance should 
continue to be placed on certain aspects of the conceptual model. These aspects simplified 
model construction. As such, they increased the amenability of the existing model to 
parameter estimation and uncertainty quantification. However, BHP wished to ensure that 
these simplifications did not compromise the integrity of important model predictions. Of 
particular interest were specifications of model boundaries. 
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This short report is organized as follows. Chapter 2 is devoted to outlining the concepts on 
which linear analysis rests. Chapter 3 describes the model which forms the subject matter of 
this report – that is, the model on which linear analysis was undertaken. Chapter 4 documents 
some of the outcomes of that analysis. Chapter 5 finishes the report with some concluding 
remarks. 
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2. LINEAR ANALYSIS 
2.1 Parameters and Stochasticity 
The task of decision-support modelling is to quantify and reduce the uncertainties of 
predictions of management interest.  

Quantification of the uncertainty of a management-salient prediction requires that aspects of 
a system that contribute to this uncertainty be represented in a model in ways that reflect their 
unknown status. That is, they should be represented as stochastic quantities that can assume 
any value within a range that is decreed to be reasonable based on so-called “prior 
knowledge”. According to this knowledge, some of these values may be more likely than 
others. This aspect of prior knowledge is respected by awarding prior probability distributions 
to parameters. The purpose of these distributions is to assign greater likelihood to some values 
over others. 

We denote a model feature that can assume a range of possible values as a model 
“parameter”. Parameters include properties of the subsurface such as hydraulic conductivity 
and specific storage. Notionally, these properties can actually be measured at discrete points 
within a model domain. If enough measurements are made, an empirical prior probability 
distribution can be assembled. As a reflection of prior knowledge, this probability distribution 
should include the notion that hydraulic properties at nearby points are more likely to be similar 
to each other than properties at points that are far apart. This tendency for closeness-based 
hydraulic property similarity is often referred to as “spatial correlation”.  

A model’s parameters may also include system drivers such as recharge. They may even 
include historical pumping rates if these are only approximately known. More abstract model 
specifications, such as the values ascribed to boundary conductances, may also be denoted 
as parameters. The conductance ascribed to all or part of a model boundary determines how 
easily water can move in or out of the modelled system through that boundary to a broader 
groundwater system, or to the land surface. Conductances can rarely be directly measured in 
the field. However their values may be inferable from system behaviour. Their representation 
as model parameters recognizes that these inferences can only be approximate. 

Generally a groundwater model is endowed with many parameters – hundreds, thousands or 
even tens of thousands of parameters – all describing different aspects of a system whose 
behaviour we wish to manage. Their representation as stochastic (i.e. probabilistic) quantities 
embodies the fundamental truth that our knowledge of the system that we wish to manage is 
far from complete. Acceptance of this truth is a prerequisite for decision-support groundwater 
modelling. The modelling process thereby strives to represent that which is known, while 
quantifying the repercussions for management risk of that which cannot be known.  

The inclusion of thousands, or even tens of thousands, of parameters in a model may appear 
to be unnecessarily cumbersome. Indeed, there are numerical and cognitive costs associated 
with the use of so many parameters. Furthermore this number of parameters is far greater 
than that which can be estimated uniquely through history-matching (see below). 
Nevertheless, the following should be born in mind. 

• As Freeze et al (1990), Doherty and Simmons (2013) and other authors make clear, 
a model best serves the decision-making process by associating uncertainties with 
decision-critical model predictions. 

• For this to occur, it is just as important for a model to include parameters whose 
values cannot be uniquely estimated as it is to include those whose values can be 
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uniquely estimated, for it is the former that may contribute most to the uncertainties 
of decision-critical predictions. 

• Modern methods of history-matching and uncertainty analysis, such as those 
provided by the PEST and PEST++ suites, can readily accommodate large numbers 
of parameters. 

2.2 History-Matching 
2.2.1 Data Assimilation 
By definition, stochastic variables such as model parameters cannot be assigned a single 
value. Instead, they can only be populated by using “realisations” of their values. These are 
samples drawn from their joint probability distribution. The word “joint” when applied to 
parameters implies that not all parameters are statistically independent of each other. Some 
parameter types show spatial correlation. Hence, while the value of a parameter type at one 
location is not completely determined by its value at another, the former is nevertheless 
influenced or constrained by the latter. Therefore patterns of heterogeneity that emerge in any 
realisation of parameter values drawn from their joint probability distribution will reflect their 
spatial correlation structure. 

Suppose that a model is populated by a single realisation of parameter values drawn from the 
prior parameter probability distribution; this is the probability distribution that emerges from 
expert knowledge and site characterisation. Suppose further that the model is then run over 
an historical period of time over which measurements of system state (such as heads or spring 
flows) were made. Pertinent model outputs can be compared with these measurements. This 
process can be repeated for other prior parameter realisations. Because model parameters 
are stochastic quantities, so too are model outputs. It will generally be found that model-
calculated system states for any realisation differ widely from those that were actually 
measured, and that collectively, over all realisations, they span a far greater range than 
measured values.  

Suppose that we now insist that the values assigned to model parameters must be such that 
its outputs are reasonably close in value to corresponding field measurements. The metric for 
“reasonably close” is governed by: 

• the credibility of the measurements themselves (i.e. the extent to which these 
measurements are contaminated by possible errors); and 

• the extent to which a numerical model can be expected to reproduce measured 
nuances of system behaviour. 

Normally, for the sake of simplicity, modellers group these two sources of potential model-to-
measurement misfit into a single stochastic term which they denote as “measurement noise”, 
even though the latter source of error is more correctly described as “structural noise”. The 
act of tuning model parameters so that a model can reproduce past system behaviour is known 
as “history-matching”.  

If the conceptual basis for a numerical model is sound, then it should be possible to find a set 
of parameters which allows the model to replicate (within limits set by measurement noise) 
the historical behaviour of the simulated system at the discrete number of points at which this 
behaviour was observed. In fact, it is generally possible to find an uncountable number of 
realistic parameter sets which achieve this match. A “realistic” parameter set is one for which 
parameter values are such that it could have been sampled from the prior parameter 
probability distribution. However, our insistence that parameters with which we endow a model 
for the purpose of predicting the future must also allow it to respect what we know about the 



 

7 

 

past may significantly reduce the range of parameter options that are available to us through 
their prior probability distribution. This reduction of parameter uncertainty that is accrued 
through history-matching is often referred to as “data assimilation”.  

History-matching-induced alterations to the prior parameter probability distribution affect the 
uncertainties ascribed to model predictions. Depending on the contents of the history-
matching dataset, the uncertainties of some predictions may be reduced through history-
matching more than those of others. To the extent that predictions of management interest 
are sensitive to parameters whose uncertainties are significantly reduced through data 
assimilation, their uncertainties are correspondingly reduced. This is schematised in Figure 
2.1. 

 
Figure 2.1 An ability to replicate the past improves a model’s ability to forecast the future. 

2.2.2 Bayes Equation  
The imposition of constraints on parameter values by history-matching is described by Bayes 
equation. This equation has inspired a field of mathematical and numerical endeavours whose 
purpose is directed toward one end - characterizing the so-called “posterior probability 
distribution” of parameters. This is the name given to the stochastic description of joint 
parameter uncertainty that respects the constraints imposed on parameters born of our 
insistence that model outputs replicate measurements of system behaviour to within limits set 
by measurement noise.  

This terminology can be extended to predictions of management interest made by a model. 
The prior probability distribution of a model prediction describes the range of predictive 
possibilities that emerge from the prior probability distribution of model parameters. The 
posterior probability distribution of a prediction is often (but not always) narrower than its prior 
probability distribution. This reflects the fact that any set of parameters that is used to make 
that prediction must earn its place in the posterior parameter probability distribution by allowing 
the model to replicate field measurements of system behaviour. 

Unfortunately, while the above concepts are easy to describe (and are somewhat obvious), 
they are difficult to implement. Implementation problems include the following. 

After history matching

• Geological mapping
• Direct measurements of system properties
• Aquifer pumping tests
• Geophysics
• Geochemistry

Numerical 
model

Predictive uncertainty

Numerical 
model

Prior to history matching
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• It is difficult to characterize the prior probability distribution of parameters that pertain 
to geological media whose origins and dispositions are the outcomes of somewhat 
chaotic natural processes. 

• It is difficult to characterize the stochasticity of “measurement noise” that includes 
model-to-measurement misfit arising from the many simplifications and abstractions 
that beset any numerical model. 

• It is difficult to calculate the stochasticity of model predictions from that of model 
parameters when the relationship between the two is so complex that it must be 
represented by a numerical model. 

It follows that mathematical expressions for posterior parameter and predictive probability 
distributions cannot be derived. Hence these distributions must be defined by sampling them. 
Software packages such as the PESTPP-IES ensemble smoother (White; 2018) are designed 
to achieve this outcome. First PESTPP-IES generates realisations of parameter values by 
sampling an approximation of the prior parameter probability distribution. It then attempts to 
adjust each of these realisations by the minimum amount required for model outputs to match 
field observations. Once adjusted, each such realisation constitutes a sample from the 
posterior parameter probability distribution. If enough parameter sets are subjected to this 
process, and if a model prediction of management interest is then made using all of these 
parameter sets, model-calculated values of the prediction collectively define its posterior 
probability distribution.  

Sampling of the posterior parameter and predictive probability distributions in this way can be 
a numerically demanding process. However if certain approximations are made, the prior and 
posterior probability distributions of parameters, and of predictions which depend on them, 
can be characterized using mathematical expressions that can be evaluated rather easily. 
This is useful in itself. However, even more enticing are the possibilities that this offers for 
undertaking other informative, uncertainty-related calculations. These include evaluation of 
data worth, discovery of the principle sources of prior and posterior predictive uncertainty, and 
assessment of model predictive integrity. 

2.3 Linear Analysis 
The theory and benefits of linear analysis, when undertaken in concert with groundwater 
modelling, have been discussed by authors such as Moore and Doherty (2006), James et al 
(2009), Dausman et al (2010), and White et al (2016). It can be implemented using utility 
software supplied through the PEST, PEST++ and PyEMU suites. 

2.3.1 Assumptions 
Linear uncertainty analysis is also known as “first order second moment” (or “FOSM”) analysis. 
It provides approximate mathematical characterisation of prior predictive probability 
distributions, and of posterior parameter and predictive probability distributions. It can be used 
to demonstrate how the history-matching process bestows worth on data. It can also be 
deployed to track the flow of information from field measurements of system state to 
parameters, and ultimately from parameters to model predictions. It does this by implementing 
Bayes equation under the following assumptions. 

• The prior probability distribution of parameters is multiGaussian. 
• “Measurement noise” (including structural noise) is also characterized by a Gaussian 

distribution. 
• The relationships between model outputs that correspond to measurements of 

system state and parameters employed by a model can be approximated by the 
action of a matrix on a vector. 
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• Model outputs that correspond to predictions of management interest can be 
calculated using another matrix that acts on model parameters. 

Let us briefly examine each of these assumptions in turn. 

2.3.2 MultiGaussian Distribution 
A Gaussian distribution is a normal distribution. This can be characterized with mathematical 
ease. It is the simple “bell shaped” probability distribution with which we are all familiar.  

If a single random variable has a normal probability distribution, then its stochastic properties 
can be completely described by its mean and standard deviation. The former denotes its 
central value, while the latter denotes its propensity to vary about this central value; for a 
Gaussian distribution, this propensity is symmetrical.  

If m random variables (for example a parameter set with m members) have a multiGaussian 
distribution, then each of them can be awarded a mean and a standard deviation. However 
this does not complete the characterisation of their joint probability distribution; something 
must be said about whether the value of one variable is affected by that of another, that is if 
one variable tends to be above its mean or below its mean if the other is above its mean or 
below its mean. If two variables are not statistically independent, then they are said to possess 
a covariance (or to be correlated). To complete the stochastic characterisation of a set of 
random variables, we must depict the amount of covariance that exists between each pair of 
random variables that collectively comprise the set.  

Covariances between pairs of random variables can be collected into a matrix; unsurprisingly, 
this matrix is referred to as a “covariance matrix”. If there are m random variables in a set, 
then the covariance matrix that describes this set has m rows and m columns. Because a 
covariance matrix is symmetric, half of its elements are duplicated. Within this matrix, off-
diagonal elements describe covariances between pairs of individual variables. Meanwhile, the 
diagonal elements of this matrix (of which there are m) denote the variances of individual 
variables; variance is the square of standard deviation. 

Generally, the covariance matrix of measurement noise is assumed to be diagonal. That is, 
the values of all of its off-diagonal elements are assumed to be zero. This means that the 
“noise” ascribed to any one measurement (which, as stated above, quantifies a model’s 
license to eschew a perfect fit with that measurement) is independent of its licence to eschew 
a perfect fit with any other measurement. In reality, this is not actually an accurate description 
of the proclivity of models to misfit real world measurements. However in most groundwater 
modelling circumstances, errors in the uncertainties attributed to decision-critical predictions 
incurred by this assumption are relatively small. 

In contrast, a covariance matrix that describes prior parameter uncertainties is rarely diagonal. 
Because the hydraulic properties of the heterogeneous material through which groundwater 
flows are likely to show spatial correlation, the prior parameter covariance matrix must be 
endowed with off-diagonal elements which reflect the distance over which parameter value 
similarity is likely to prevail. Representation of earth property heterogeneity using concepts 
that are based on spatial correlation is actually an extreme simplification of the complex 
patterns of heterogeneity that characterize real geological media. Nevertheless, it is adequate 
for linear analysis, the purpose of which is to obtain approximate estimates of parameter and 
predictive uncertainty, and to calculate value-added quantities such as data worth and 
parameter contributions to predictive uncertainty. 
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2.3.3 Model as a Matrix 
The matrix that replaces a model when conducting linear analysis is a matrix of sensitivities. 
When the model is deployed to reproduce field measurements, the elements of this matrix are 
the sensitivities of corresponding model outputs to all of the model’s parameters. This matrix 
must therefore possess n rows and m columns, where n is the number of field measurements 
and m is the number of model parameters. The sensitivity matrix which describes the action 
of the model under historical conditions is sometimes referred to as the “Jacobian matrix”. 

Where a model is deployed to make predictions of management interest, the matrix which 
replaces the model contains sensitivities of these predictions to all model parameters. Where 
only a single prediction is of interest, this matrix becomes a vector, for it possesses only one 
row; however it retains m columns. 

Filling of historical and predictive sensitivity matrices is the most expensive part of linear 
analysis. Generally it requires that the model be run m times under each of these conditions, 
with a single parameter varied incrementally on each occasion. Differences in model outputs 
are divided by the difference in the varied parameter in order to calculate their sensitivities 
with respect to this parameter. Obviously, filling of historical and predictive sensitivity matrices 
can be very time-consuming where parameter numbers are large and where model run times 
are long.  

2.4 Some Outcomes of Linear Analysis 
2.4.1 General 
As has been described, linear analysis relies on matrices – covariance matrices and sensitivity 
matrices. Using equations that are built from these matrices, quantities that support and 
illuminate the role of data assimilation in decision-support modelling can be readily calculated. 
We now briefly discuss some of these. 

2.4.2 Parameter Estimation 
Under the assumptions that underpin linear analysis, Bayes equation is separated into two 
independent matrix equations. One of these equations evaluates the posterior mean of all 
parameters. These are linear approximations to values that emerge from the process of 
“model calibration”. As is discussed in texts such as Doherty (2015), calibration is a form of 
history-matching that seeks a unique set of parameter values. However “uniqueness” does 
not mean “correctness”. Pseudo-uniqueness of a calibrated parameter field is achieved 
through pursuit of parameter values which lie at the centres of their respective posterior 
probability distributions. 

Equations that are very similar to the linearized form of Bayes equation form the numerical 
engines of programs from the PEST and PEST++ suites. Of course, these equations are only 
approximate because groundwater processes are nonlinear with respect to parameters. 
Hence estimates of posterior parameter means obtained using these equations must be 
iteratively refined by these software packages through re-calculation of Jacobian matrices (or 
approximations thereto) as these estimates are improved. 

2.4.3 Parameter Uncertainty 
The second matrix relationship that emerges from linearisation of Bayes equation calculates 
the posterior parameter covariance matrix. Posterior parameter correlations are readily 
obtained from the off-diagonal elements of this matrix. Because history-matching rarely, if 
ever, promulgates parameter uniqueness (except when it is purposefully, and artificially, 
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sought through model calibration), many subsets of parameters exhibit high amounts of 
posterior correlation.  

Diagonal elements of the posterior parameter covariance matrix denote post-history-matching 
parameter variances. (Recall that variance is the square of standard deviation.) Similarly, prior 
parameter variances form the diagonal elements of the user-supplied prior covariance matrix. 
Armed with both of these matrices, a modeller can readily compare prior and posterior 
parameter uncertainties. If desired, this ratio can be mapped. A modeller, or modelling 
stakeholder, can thus see at a glance where, in a model domain, parameter uncertainties have 
been reduced through history-matching and where they have not been reduced. 

2.4.4 Predictive Uncertainty 
Simple matrix equations allow evaluation of the prior and posterior uncertainties of any 
prediction from prior and posterior parameter covariance matrices. Use of these equations 
requires that the sensitivity of a prediction to all model parameters be known. As stated above, 
these can be obtained through repeated predictive model runs based on finite parameter 
differences. Once these sensitivities are available, the capacity of the history-matching 
process to reduce the uncertainty of a prediction can be readily assessed.  

2.4.5 Data Worth 
The worth of field measurements rises in proportion to their ability to reduce the uncertainties 
of decision-critical predictions. As is discussed above, pre- and post-history-matching 
predictive uncertainties are readily evaluated using matrix equations that linearize Bayes 
equation. Once these equations have been formulated, it is a simple matter to include or 
exclude subsets of a measurement dataset in order to test the effects of their inclusion or 
exclusion on the uncertainty of a prediction of interest. Their ability to reduce (or not) the 
uncertainty of that prediction can thereby be assessed. So too can the uniqueness of the 
information that is resident in different subsets of an entire measurement dataset. If the 
omission of a data subset from the complete history-matching dataset precipitates a significant 
rise in the uncertainty of a prediction of interest, this indicates that the information that it 
contains is unique to that subset. 

A remarkable characteristic of the matrix equations that are used to calculate both prior and 
posterior predictive uncertainties is that these equations do not feature the values of 
parameters, the values of field measurements, nor the values of the predictions themselves. 
They feature only sensitivities of pertinent model outputs to parameters employed by the 
model. This has an extremely useful consequence. It means that the worth of data can be 
assessed before these data are actually gathered. Optimized strategies for future data 
acquisition can therefore be developed using linear analysis. 

2.4.6 Contributions to Uncertainty 
A further use of linear analysis (that to which the present report is partly devoted) is that of 
assessing the importance of different model specifications to the task of making particular 
predictions of management interest. These assessments can guide a modeller toward 
implementation of model design and simplification strategies that facilitate use of a model in 
nonlinear data assimilation and predictive uncertainty quantification. These assessments can 
also resolve arguments about whether a certain aspect of model design requires correction or 
improvement before a model is deployed in a particular decision support context. 

In analyses of this type, parameters can be used as surrogates for different facets of a model’s 
design. For example, the parameters associated with a certain boundary condition can act as 
surrogates for the boundary condition itself, and/or for real-world hydraulic processes that the 
boundary condition replaces or simplifies. In order to assess the integrity of simplifications that 
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are encapsulated in the boundary, a modeller can first assume that its parameters are free of 
error. The posterior uncertainties of predictions of management interest can then be calculated 
using matrix equations discussed herein. The modeller can then repeat this calculation after 
assigning to these boundary parameters prior uncertainties that reflect the potential for error 
that is incurred by use of these boundaries in place of a more complex reality. If the posterior 
uncertainties of decision-critical model predictions increase by amounts that are small 
compared to their overall uncertainties, it is thereby established that the simplification strategy 
embodied in the boundary condition has integrity for the decision-support role that the model 
is intended to play. If the model’s speed of execution and numerical stability are well served 
by this simplification, this may enhance use of the model in nonlinear parameter estimation 
and Bayesian analysis. Meanwhile linear analysis has demonstrated that the benefits of 
simplification outweigh its costs. 

2.4.7 Singular Value Decomposition 
If the Jacobian matrix (i.e. the matrix of sensitivities of model outputs used in the calibration 
process to parameters employed by a model) is subjected to singular value decomposition, 
parameter space can be subdivided into two orthogonal subspaces. One of these is referred 
to as the “calibration null space”, while its orthogonal complement is referred to as the 
“calibration solution space”. The null space is comprised of combinations of parameters that 
are completely uninformed by the history-matching dataset. The individual components of 
each of these parameter combinations are thus completely correlated with each other. 
Therefore, if they are varied in ratios that are defined by these combinations, they have no 
effect on model outputs that correspond to field measurements.  

In contrast, each of the linear combinations of parameters that collectively comprise the 
calibration solution space is uniquely estimable on the basis of the calibration dataset. (PEST 
jargon sometimes refers to each such parameter combination as a “super parameter”.) This 
does not mean that this combination of parameters can be estimated without uncertainty. It 
means that its uncertainty is an outcome of random errors associated with measurements that 
comprise the calibration dataset, and not of an information deficit in the calibration dataset. 

In most groundwater history-matching contexts, the dimensionality of the null space is far 
greater than that of the solution space. The dimensionality of the latter space can be viewed 
as the number of individual pieces of information that are accessible to model parameters 
through the history-matching process. Each such piece of information supports unique 
estimation of one super-parameter. 

2.5 Traditional Sensitivity Analysis 
We conclude this section with a few words on sensitivity analysis in general.  

The requirement that sensitivity analysis accompany model construction and deployment is 
deeply engrained in groundwater modelling culture. However the purpose, and desired 
outcomes, of sensitivity analysis are rarely stated in modelling proposal requests and 
responses. Similarly, repercussions of the outcomes of sensitivity analysis for model usage in 
decision support are rarely addressed in reports that accompany delivery of a model.  

The term “sensitivity analysis” means different things to different people. So-called “global 
sensitivity analysis” is a field of mathematical endeavour on which books and papers have 
been written; see, for example, Pianosi et al (2020) and Saltelli et al (2004; 2007). Meanwhile, 
in the groundwater modelling context, “local sensitivity analysis” has been recommended as 
a means of separating parameters whose values can be estimated through history-matching 
from those whose values cannot. Texts such as Hill and Tiedemann (2005) advise a modeller 
to exclude the latter parameters from the history-matching process, as attempts to estimate 
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them could promulgate over-fitting of model outputs to field measurements. Sensitivity 
analysis is also recommended as a mechanism for gaining qualitative insights into parameter 
and predictive uncertainties. 

Modern-day parameter estimation and uncertainty analysis is numerically untroubled by large 
numbers of parameters, nor by attendant parameter nonuniqueness. In fact, as is discussed 
above, the integrity of uncertainty analysis requires the inclusion of all parameters to which a 
management-salient prediction may be sensitive, regardless of their estimability. Old-
fashioned local sensitivity analysis, conducted as a precursor to excluding parameters from 
the history-matching process, or to gain qualitative insights into model parameter and 
predictive uncertainty, is therefore unnecessary. 

The analyses described herein fall under the ambit of local sensitivity analysis because their 
implementation requires the filling of matrices which characterize sensitivities of model outputs 
to model parameters. These analyses yield estimates of parameter and predictive uncertainty 
in contexts where parameter numbers are as high as they need to be for these analyses to 
have integrity. The matrix equations that implement them are slightly more complicated than 
those that are employed in traditional local sensitivity analysis. Furthermore, they require that 
a modeller provide a prior parameter covariance matrix that specifies prior parameter 
uncertainties and correlations. Nevertheless, in spite of their slightly greater complexity, all of 
the analyses described herein are easily implemented using public domain software which 
was written for this purpose.  
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3. THE MODEL 
3.1 General 
3.1.1 Purpose of the Present Study 
The model which is the subject of the present GMDSI report was developed in 2015 for BHP 
by a consulting company. It is referred to herein as the “ODGAB model”. It replaces a previous 
model which was developed to explore similar issues. In the recent past, it has itself been 
superseded by an improved model.  

The short study that is described herein employs the ODGAB model. It was undertaken in 
order to explore issues which are salient to the design of the improved model. Of particular 
interest are the specifications of some of the new model’s boundary conditions. Boundary 
condition specification is a problem that decision-support modelling must face on an everyday 
basis. It is incumbent on those who design and build such a model to ensure that predictions 
of stakeholder interest made by that model either suffer no bias, or that any (hopefully small) 
potential bias that emerges from abstractions in conceptual or numerical model design that 
are necessary for an analysis of predictive uncertainty, are included in the uncertainty margins 
themselves.  

A plan of the ODGAB model domain is provided in Figure 3.1, together with place names that 
feature in the following discussion. Our description of the model is brief. It is restricted to those 
aspects of its design that are necessary for an understanding of linear analysis that was 
accomplished using this model. The latter is the focus of the study reported herein. 

3.1.2 The Problem 
BHP’s Olympic Dam mine, and the township of Roxby Downs which services it, are located 
approximately 520 km north north west of Adelaide, South Australia. The mine operates two 
wellfields for water supply; these are named “Wellfield A” and “Wellfield B”. Five abstraction 
wells and 42 monitoring wells comprise Wellfield A, while three abstraction wells and 47 
monitoring wells comprise Wellfield B. Government monitoring bores have also been drilled in 
the general area. Wellfield A is located approximately 100 km north of the Olympic Dam mine 
near the south western margin of the Great Artesian Basin (GAB). Wellfield B is located about 
80 km north east of Wellfield A, also within the GAB but further from its margin. At the time of 
writing, about 27 Ml/d of water is extracted from these wellfields. 

BHP wish to ensure that numerical modelling supports management of water extraction from 
these wellfields to the best extent possible. It is hoped that this will be achieved if modelling is 
open for stakeholder discussion, and recognizes the need to quantify the uncertainties of 
predictions of management and stakeholder interest, while reducing these uncertainties as 
much as possible through state-of-the-art data assimilation.   

3.1.3 Geology and Hydrogeology 
With an area of about 1.7 million square kilometres, the GAB is one of the largest underground 
freshwater resources in the world. See Figure 3.1. It includes the Eromanga, Surat and 
Carpentaria basins. Parts of the GAB lie in the Northern Territory, Queensland, South Australia 
and New South Wales.  

Groundwater flows through sandstones of Triassic, Jurassic and early Cretaceous age from 
high ground at the eastern edge of the basin in Queensland and New South Wales. A much 
smaller amount of water also recharges the basin along its western margin in arid central 
Australia within the domain of the ODGAB model. Much of this latter recharge is diffuse. 
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However that which results from ephemeral flows in the Finke and Plenty Rivers is 
concentrated in time and space. 
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3.1.4 Elements of the Regional Water Balance 
Water leaves the south western portion of the GAB through a number of springs and seeps. 
Details of water movement from GAB aquifers to springs are not well understood. Spring 
locations are thought to be controlled by faulting, and/or by abutment of sandstone aquifers 
with impermeable rocks from neighbouring basins. Springs sustain their own ecosystems. 
They were an important source of water for Aboriginal communities; as such, they have a high 
cultural value. Springs that are pertinent to the present study are depicted in Figure 3.1. Up to 
75 Ml/d of water (possibly more) is thought to flow from these springs. However this estimate 
is uncertain because of difficulties in measuring spring flows and the paucity of flow records. 
Some of this water is nearly 2 million years old (Mudd, 2000). 

Within the domain of the ODGAB model, somewhere between 20 and 300 Ml/d of water is 
thought to be lost from GAB aquifers as diffuse, evaporative discharge. Towards the south 
western margins of the GAB, where overlying aquitards are relatively thin, water migrates 
upwards through these aquitards in response to the prevailing vertical head gradient. 

Since the late 19th century, artesian GAB waters have sustained the pastoral industry in large 
parts of central and southern Australia which are otherwise bereft of water. Water from free-
flowing bores has been wasted, and pressures have fallen, as have flows from springs. A 
government funded well capping program is rectifying this situation. Pastoral bores located 
within the domain of the ODGAB model are shown in Figure 3.2. Rates of water extraction 
from these bores have fallen from about 200 Ml/d in 1980 to about 100 Ml/d at the present 
time. Pastoral water use is expected to continue at the latter rate into the indefinite future. 

Large amounts of water are also extracted from GAB aquifers by the fossil fuel industry. In 
eastern parts of the GAB, water is extracted in order to depressurise coal measures, from 
which methane gas is desorbed and extracted. Within the domain of the ODGAB model, about 
30 Ml/d of water was co-produced with conventional gas in the Moomba wellfield during 2013 
and 2014. Extraction has since risen to  60 Ml/d in the Western Flank; see Figure 3.2. 

 

https://en.wikipedia.org/wiki/Spring_(hydrosphere)
https://en.wikipedia.org/wiki/Seep_(hydrology)
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Groundwater extraction from the GAB in the southern part of the model domain to meet the 
requirements of the Olympic Dam mine and Roxby Downs township began in the early 1980s. 
The rate of extraction varies; it has averaged about 32 ML/d over the period 2000-2020. As 
stated above, this water is taken from Wellfields A and B which currently employ 
eight production bores. See Figure 3.3. 

GAB groundwater flows into the ODGAB model area, primarily from Queensland, at an 
estimated rate of between 200 Ml/d and 600 Ml/d. The lower estimate implies a net loss of 
groundwater from the GAB aquifer within the ODGAB model area (because outflows exceed 
inflows); evidence for this includes broadly declining pressures. However this trend is being 
reversed because of pastoral bore capping programs. 
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3.2 MODEL DESIGN 
3.2.1 The Model Grid 
The ODGAB model simulates groundwater flow using MODFLOW-USG (Panday et al, 2013). 
Despite the fact that high temperatures affect the density of groundwater, simulation assumes 
a uniform water density. To compensate for this, measured heads that are employed for model 
calibration are density-corrected.  

The model grid is rectilinear; it is refined in areas of interest such as Wellfields A and B, and 
around springs that may be impacted by extraction from these wellfields. The smallest model 
cells have dimensions of 1 km × 1 km, while the largest model cells are 8 km × 8 km in size. 
Cell dimensions change by a factor of 2 at cell refinement boundaries. See Figure 3.4. 

3.2.2 Layering 
The ODGAB model employs three layers. The deepest layer (layer 3) represents the Jurassic 
Algebuckina Sandstone and Lower Cretaceous Cadna-owie Formations. Collectively, these 
comprise the principle GAB aquifer in the region; it is referred to as the “J-K Aquifer” herein. 
The Algebuckina Sandstone is comprised of terrestrial and fluvial sediments while the Cadna-
owie Formation is comprised of terrestrial to marginal marine sandstone with finer grained 
interbeds. Layer 3 outcrops over part of the north west boundary of the model domain, where 
it is able to directly receive recharge waters. 

Layers 1 and 2 of the ODGAB model are aquitards; they are the confining agents of layer 3. 
Nevertheless, they allow vertical transmission of water from the J-K Aquifer to the surface over 
parts of the model domain, where it evaporates. Layer 1 represents Quaternary to Cretaceous 
surficial sediments, as well as the Winton and Mackunda Formations. Layer 2 represents the 
Cretaceous Oodnadatta Formation, Coorikiana Sandstone and Bulldog Shale.  

All layers of the ODGAB model are designated as confined at all places within its domain, 
even where they outcrop. Failure to designate layers as unconfined in outcrop areas has very 
little effect on model outcomes as groundwater head variations are small in these places. 

3.2.3 Simulation Time 
The ODGAB model runs for 196.5 years, of which 96.5 years span the period leading up to 
2014, and 100 years comprise the period over which the model is required to make 
predictions. The simulation time is subdivided into 170 stress periods. A “stress period” is 
MODFLOW jargon for a period of time over which boundary conditions (including recharge 
and pumping rates) do not vary. The simulation begins with a steady state stress period; this 
represents conditions before any extraction took place from the J-K aquifer. Within the 
confines of the ODGAB model domain, extraction of water for pastoral purposes began in July, 
1918.  

3.2.4 Boundary Conditions 
In this report, we employ the term “boundary condition” to describe any mechanism through 
which water can enter of leave a simulated groundwater system. 

3.2.4.1 Recharge 
Recharge of between 2.5 mm/yr and 5.4 mm/yr is applied to layer 3 of the ODGAB model 
where it outcrops; see Figure 3.5. 
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3.2.4.2 Flow from the Wider GAB 
It has been estimated that 200 Ml/d to 600 Ml/d of water flows into the domain of the ODGAB 
model from the eastern GAB. The ODGAB model represents this connection as a fixed head 
boundary. Heads assigned to cells along this boundary were inferred from head 
measurements in a small number of nearby wells. Measured heads were density-corrected in 
order to accommodate the high temperatures that prevail deep within GAB aquifers, as well 
as the elevated salinities of GAB waters. 

Figure 3.5 depicts fixed head cells along the eastern boundary of the model domain. These 
are all emplaced in layer 3 of the ODGAB model. A no-flow condition prevails for all other layer 
3 boundary cells, and for all boundary cells in all other model layers. 

3.2.4.3 Springs 
The ODGAB model represents springs in an approximate manner, as its focus is on calculating 
artesian pressures beneath springs, rather than flows from the springs themselves. The latter 
are dependent on local conditions that are beyond the ability of a regional model to represent. 
Nevertheless, the ODGAB model allows water to escape from the system in areas where 
springs occur, for this affects local groundwater heads. This is simulated using the MODFLOW 
DRAIN boundary condition. In construction of the ODGAB model, the conductances 
associated with these drains were adjusted so that losses of water through different groups of 
nearby springs is respected.  

Model cells to which DRAIN boundary conditions are assigned are depicted in Figure 3.5. 

3.2.4.4. Diffuse Discharge 
In those parts of the model domain where model layers 1 and 2 are relatively thin, water 
migrates upward through these layers from the J-K aquifer to the surface, where it evaporates. 
The EVT package of MODFLOW-USG simulates this mechanism of water loss. Like the 
DRAIN package, the EVT package is a one-way boundary condition whereby water is 
removed at a rate that is governed by proximity of its head to the surface. However a user-
defined maximum potential rate of water loss is specified for the EVT package, as is the depth 
range over which evapotranspired water can be taken from the model. 

3.2.4.5 Well Extraction 
A total of 68 individual wells are represented in the ODGAB model. These include pastoral 
wells, BHP extraction wells, and Moomba gas field extraction wells. In all cases, water is 
extracted from layer 3 of the model at user-specified rates using the MODFLOW-USG WELL 
package. 

3.3 System Properties 
3.3.1 Model Parameters  
In the present discussion, we use the word “parameters” to denote values ascribed to model 
representations of hydraulic and boundary properties that govern flow of water within the 
model domain, and between the model domain and the outside world. These can be adjusted 
through the history-matching process in order to allow model-generated heads and fluxes to 
replicate field measurements of these quantities.  

3.3.2 Hydraulic Conductivity 
Rocks are heterogeneous, and must be represented as such in a groundwater model. Local 
measurements of aquifer and aquitard properties are generally sparse; furthermore, such local 
measurements are generally of limited use in characterizing regional groundwater movement. 
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While assignment of properties to different parts of a model domain can be illuminated by 
knowledge of prevailing rock types, generally hydraulic properties must be inferred (albeit with 
considerable uncertainty) from historical observations of system heads and fluxes. 

The horizontal hydraulic conductivity of an aquifer is of greater interest than its vertical 
hydraulic conductivity, as groundwater flows parallel to its upper and lower boundaries. In 
contrast, the vertical hydraulic conductivity of an aquitard is of more interest than its horizontal 
hydraulic conductivity. In recognition of this, the vertical anisotropy of layer 3 of the ODGAB 
model was set to a uniform, and rather arbitrary, value of one tenth of its spatially variable 
horizontal hydraulic conductivity. The horizontal hydraulic conductivities of layers 1 and 2 were 
set to uniformly low values. 

Because layers 1 and 2 act in concert to confine layer 3, while providing a pathway for slow 
migration of water to the surface where it can be evaporated, both of these layers were treated 
as a single layer from a parameterisation point of view. Thus at any location within the model 
domain, a single value of vertical hydraulic conductivity is assigned to both of these layers. 
Spatial variability of vertical hydraulic conductivity is characterised using pilot points; their 
disposition is shown in Figure 3.6.  

Spatial variability of horizontal hydraulic conductivity in layer 3 is also characterized using pilot 
points; see Figure 3.7. The inset of this figure depicts subparallel lines of pilot points oriented 
in a north north westerly to south south easterly direction in the vicinity of Wellfield A. These 
were deployed to accommodate the presence of barriers to groundwater flow that are known 
to prevail in these areas.  

3.3.3 Specific Storage 
Pilot points are also used to describe spatial variability of specific storage in layer 3 of the 
ODGAB model. Figure 3.6 plots the disposition of pilot points that are used for this purpose. 
In contrast, the specific storage of layers 1 and 2 was ascribed a calibration-adjustable, 
uniform value. Spatial variation of this property has little consequence for either replication of 
field measurements, or for predicting future system behaviour. 

3.3.4 Drain Conductance 
The rate of water emergence at springs is governed by conductances ascribed to MODFLOW 
DRAINs that connect springs to the GAB aquifer. These conductances can be adjusted in 
order for the model to respect observed spring flow and groundwater heads. 

In the ODGAB model, springs are collected into groups. Groups are defined by proximity, and 
by the fact that measured flow rates comprising the model calibration dataset pertain to groups 
of springs rather than to individual springs. All DRAINs within a spring group are assigned the 
same conductance value. Collectively, 91 individual springs are amalgamated into 32 groups 
for which 32 values of DRAIN conductance require assignment. 
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3.3.5 Pilot Points as a Parameterisation Device 
Where a hydraulic property varies spatially over a model layer, a value for this property must 
be assigned to every model cell within that layer. A model layer may contain thousands, or 
even tens of thousands, of cells. However, the use of pilot points to characterize a particular 
hydraulic property allows representation of its spatial variability over that layer using only a 
few hundred parameters; these are ascribed to pilot points rather than to cells. The assignment 
of hydraulic properties to model cells then becomes a two-step process. Firstly hydraulic 
properties are assigned to pilot points. These properties then undergo spatial interpolation to 
cells which comprise a model layer. 

As has already been discussed, history-matching rarely, if ever, promulgates unique 
estimation of groundwater model parameters if these parameters are represented at the 
spatial scale at which prediction-salient heterogeneity of hydraulic properties is likely to exist. 
In the past, it was not uncommon for groundwater model parameters to be defined in a 
parsimonious manner specifically to accomplish uniqueness of their estimation. This was often 
achieved by subdividing each model layer into a small number of zones in each of which 
hydraulic properties are assumed to be uniform. Unfortunately, this strategy is beset by a 
number of disadvantages. These include the following. 

• Geological media are not piecewise homogeneous with sharp property discontinuities 
at polygonal boundaries. The artificial nature of zone-based parameterisation can 
induce bias in some model predictions. This bias is inherent in the zonation scheme 
itself; however its magnitude can be amplified by a history-matching process that 
employs this scheme. 

• It is often a difficult (and subjective) task for a modeller to design a zonation scheme 
that encompasses enough zones to support good model-to-measurement fit, but 
embodies few enough parameters to be uniquely estimable. Different manifestations 
of this subjectivity will result in different zonation patterns. These will introduce 
different levels of bias to model predictions. 

• As has been discussed, part of the role of decision-support modelling is to quantify 
the uncertainties of decision-critical model predictions. These uncertainties arise from 
a modeller’s inability  to assign unique values to parameters, either through expert 
knowledge or through history-matching. Hence while adoption of a parsimonious 
parameterisation scheme may promulgate parameter uniqueness, it eliminates a 
modeller’s ability to quantify predictive uncertainty. This removes from the modelling 
process one of its fundamental decision-support roles. 

Where pilot points are employed as a parameterisation device, there is no need to deploy 
them in a parsimonious manner. Modern regularisation methods promulgate calibration 
uniqueness in ways that express the inexact nature of expert knowledge as it applies to the 
properties of a particular natural system. Numerical regularisation is better implemented in 
contexts of parameter superfluity than in contexts of parameter parsimony.  

In summary, use of pilot points as a spatial parameterisation device reduces the potential for 
predictive bias at the same time as it supports parameter and predictive uncertainty analysis.  

3.4. Model Calibration 
3.4.1 General 
Prior to assessing the impacts of BHP pumping on J-K aquifer drawdown beneath GAB 
springs, the ODGAB model was calibrated. As was discussed in Chapter 2 of this document, 
the term “calibration” refers to back-calculation of hydraulic property values from historical 
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measurements of system states and fluxes. Where uniqueness is sought (as is implied by the 
term “calibration”), estimates obtained in this way pertain to averaged, or upscaled, system 
properties. The nature of the averaging process is a function of the composition of the 
calibration dataset, and of the regularisation process that is employed to attain parameter 
uniqueness. Because the same model that is used for estimation of these properties is then 
used to make predictions of management interest, it is hoped that the upscaling process that 
is implemented through model calibration is also suitable for the making of predictions. At the 
same time, it is hoped that predictions made by the calibrated model will lie somewhere near 
the centres of their posterior probability distributions. This is the basis on which parameter 
uniqueness is sought. 

3.4.2 Components of the Calibration Dataset 

3.4.2.1 Heads in 1996 
Head measurements that are recorded for 102 bores reflect J-K Aquifer conditions over the 
model domain before the commencement of BHP pumping. A single measurement from each 
of these bores was attributed to 1996. Collectively, they reflect pressure depletion from 
pastoral water extraction. The bores in which these measurements were made are depicted 
in Figure 3.8.  

In order to increase spatial coverage, these borehole-measured heads were supplemented by 
33 heads sampled from a line drawn by Sampson et al (2012) which marks the limit of artesian 
pressures. This limit line is also featured in Figure 3.8. 
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3.4.2.2 Transient Heads 
Figure 3.8 shows the locations of wells from which transient head information has been 
collected. The number of available measurements varies widely from bore to bore. 
Collectively, they span the period from August 1965 to June 2014. A total of 9829 
measurements from 82 bores were included in the ODGAB model calibration dataset. 

Transient head data were used twice in formulation of the calibration dataset. A fit was sought 
between model outputs and the heads themselves. Fits were also sought between the 
drawdown in each bore relative to the first measurement in that bore, and model-calculated 
counterparts to these drawdown measurements. The fitting of specific aspects of a calibrated 
dataset (in this case drawdown relative to the first measurement) in addition to the data 
themselves, can facilitate passage of information from that data to model parameters. If 
studiously done, it can also reduce the propensity for parameters to adopt roles which 
compensate for model defects during the calibration process; these roles may bias some 
decision-critical model predictions. See Doherty and Welter (2010), White et al (2014) and 
Doherty (2015) for more details. 

3.4.2.3 Spring Flows 
The model was required to match long term flow estimates from the 32 groups of springs 
discussed above. 

3.4.2.4 Evapotranspiration 
Estimates of long-term evaporative losses from the J-K Aquifer have been provided by a 
number of authors, these including Rousseau-Gueutin et al (2012). Parameter estimation 
required that these estimates be respected.  

3.4.2.5 Independent Estimates of Transmissivity 
Nearly 120 estimates of J-K Aquifer transmissivity are available from hydraulic testing of 
production wells that are spread throughout the domain of the ODGAB model; see Figure 3.9. 
Model-employed transmissivities, spatially interpolated to measurement sites, can be 
compared to these estimates; differences between them were minimized through model 
parameter adjustment. 

3.4.3 Strategy and Outcomes 
3.4.3.1 Calibration Specifications 
Values were estimated for a total of 1409 parameters by history-matching against a calibration 
dataset comprised of 21382 observations. Observations were divided into groups based on 
their different types. They were ascribed weights such that each observation group is visible 
in an overall objective function that increases with misfit between (processed) observations 
and their model-calculated counterparts. Model calibration reduces this objective function. 

While observations considerably outnumber parameters, their information content was 
insufficient to promulgate parameter uniqueness without the assistance of 
mathematical/numerical regularisation. As has already been discussed, cogently-
implemented regularisation pursues parameter uniqueness by estimating values for 
parameters that lie roughly at the centres of their posterior probability distributions.   

3.4.3.2 Regularisation 
Model calibration was implemented using PEST (Watermark Numerical Computing, 2015). A 
Tikhonov regularisation strategy sought parameter estimates which allow model outputs to 
replicate field measurements while differing to the minimum extent possible from a modeller-
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assigned parameter field. Theoretically, posing the history-matching problem as a 
minimisation problem in this way achieves parameter uniqueness at the same time as it 
achieves centrality of estimated parameter values with respect to their joint posterior 
probability distribution. 

3.4.4 Calibration Results 
Presentation in this report of all of the outcomes of the calibration process would serve little 
purpose. However, by way of example, we present some of them.  

Figure 3.9 depicts calibrated hydraulic conductivity for layer 3, while Figure 3.10 depicts 
calibrated specific storage for the same layer. 

We also provide two plots that compare model outputs to field observations. Both of these 
plots pertain to observation bores in Wellfield B. Figure 3.11(a) depicts a bore for which model 
calibration achieved a relatively good fit between model outputs and observed heads. In 
contrast, Figure 3.11(b) shows a case where pumping-induced drawdowns are well fit, but 
where heads are not. Unfortunately, the second of these figures is more representative of 
ODGAB model calibration outcomes than the first. 
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Figure 3.11 Selected model calibration hydrographs 
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3.5 Improving the ODGAB Model 
3.5.1 General 
The ability of the ODGAB model to replicate historical pumping-induced drawdowns 
reasonably well suggests that it may also possess the ability to predict future drawdowns 
resulting from an altered pumping regime reasonably well. In theory, its ability (or inability) to 
predict future drawdowns can, and should, be quantified through predictive uncertainty 
analysis. In the following chapter of this report we document how linear analysis was employed 
for this purpose. A more sophisticated, fully nonlinear, uncertainty analysis based on 
parameter ensembles has been undertaken using the ODGAB replacement model. This 
model is named “ODGABv2”. 

Prior to construction of ODGABv2, BHP personnel and modelling reviewers assessed 
concepts on which the ODGAB model is based, and specifications on which its construction 
rests. It was suggested that some aspects of its construction could be improved in order to 
preclude the possibility of unquantifiable predictive bias. Three issues whose exploration was 
assisted using linear analysis are now briefly described. 

3.5.2 Recharge Proximal to the North Western Model Boundary 
As shown in Figure 3.5, the J-K Aquifer is recharged in areas that are proximal to the north 
western boundary of the ODGAB model domain. The rate of recharge varies spatially between 
2.5 mm/yr and 5.4 mm/yr within the area that is depicted in this figure. However local recharge 
is considerably higher than this for short periods of time when water flows in the Finke and 
Plenty Rivers, the locations of which are also shown in Figure 3.5. See Love et al (2013) for 
more details. 

3.5.3 Inflow from the Greater GAB 
Groundwater enters layer 3 of the ODGAB model from the wider GAB along its north eastern 
boundary. This connection is represented by a line of model cells in which heads are fixed; 
see Figure 3.5.  

Potential inadequacies with this approach are as follows. 

• By design, a fixed head boundary cannot be impacted by drawdown. It represents an 
unlimited supply of water from outside the model domain. As such, it may artificially 
mitigate drawdowns induced by pumping which takes place inside the model domain. 

• Heads ascribed to this ODGAB model boundary may not be correct. Density 
corrections applied to borehole-measured heads, from which boundary heads were 
inferred, are uncertain. 

3.5.4 No-Flow Status of Southern and Western Model Boundaries 
The no-flow status of the southern and western boundaries of the ODGAB model have been 
questioned by reviewers. The hydrogeology of this area suggests that there is a potential for 
inflow and outflow to neighbouring basins along different segments of these boundaries, and 
that there is potential for small amounts of mountain front recharge in places. See Figure 3.5.  

3.5.5 Consequences of Existing Boundary Conceptualizations 
Most of the areas where the design of ODGAB model boundaries are examined using the 
linear methods documented herein are far from places where model predictions are of most 
interest, the latter being the locations of springs. Furthermore, it can be argued that the no-
flow assumption as it pertains to the southern and western boundaries of the ODGAB model 
is conservative, as it prevents inflowing water from mitigating pumping-induced drawdown; it 
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can be argued that this may lead to over-prediction of pumping-induced depressurisation of 
GAB aquifers in the vicinity of springs rather than to under-prediction of depressurisation. It 
may therefore be concluded that the decision-support role of the ODGAB model is unimpaired 
by conceptual errors that may be encapsulated in these boundaries. 

Unfortunately, these arguments have both psychological and theoretical shortcomings. Their 
psychological shortcomings arise from their subjective nature. Hence they are unlikely to 
assuage the concerns of those who hold another point of view. Their theoretical shortcomings 
are a consequence of the fact that distance is not the only factor that determines whether a 
particular model simplification has the potential to inculcate bias in a particular model 
prediction, for the post-calibration relationship between a boundary condition and a prediction 
can be quite complex. Nor can the argument that certain model boundary condition 
specifications induce a conservative predictive bias be sustained unless it can be established 
that calibration of the model does not result in parameter estimates that correct this bias, or 
even induce an opposing bias in some model predictions. White et al (2014) and Doherty 
(2015) show that this is far from impossible. 

Similar problems beset many, if not all, decision-support groundwater models. As was 
discussed in Chapter 2 of this report, model design is always a compromise. Quantification 
and reduction of predictive uncertainty requires numerical stability and speed of execution. 
However if model simplifications and abstractions that enable these qualities induce predictive 
biases that are commensurate with the uncertainties that the modelling process must attempt 
to quantify, then the cost of simplification exceeds its benefits. 
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4. EXPLORING MODEL ERRORS  
4.1 Concepts 
4.1.1 Simplification-Induced Model Errors 
Modelling supports decision-making by quantifying and reducing the uncertainties of 
management-salient predictions. These tasks require a minimum level of model complexity. A 
model, together with its parameterisation, must be of sufficient complexity to represent aspects 
of a system to which decision-critical model predictions are sensitive, regardless of their 
estimability. As is discussed in Chapter 2 of this document, acknowledgement of their lack of 
estimability is essential for predictive uncertainty quantification. A decision-support model 
must also be complex enough to assimilate decision-pertinent information through history-
matching. Complexity beyond that which serves both of these imperatives serves little 
purpose. In fact, it may degrade a model’s decision-support utility by incurring long run times 
and by providing fertile numerical ground for simulator solution convergence difficulties. 

There is no sharp cut-off between “useful complexity” and “useless complexity”. Conversely, 
the boundary between “enabling simplicity” and “damaging simplicity” is not easy to recognize. 
Hence a modeller is faced with many subjective choices. In making these choices, he/she 
must bear in mind that the omission of certain parameters and processes from a model may 
have the following undesirable consequences. 

1. It may impair a model’s ability to replicate past system behaviour, thereby impairing 
its ability to assimilate information that is encapsulated in that behaviour. 

2. Calculated predictive uncertainty limits may be narrower than actual uncertainty 
limits, this compromising a model’s ability to quantify the risks associated with 
contemplated courses of management action. 

3. It may induce bias in certain model predictions as parameters adopt roles that 
compensate for model defects during the history-matching process. 

In the following discussion, we refer to the above model shortcomings as “Type 1”, “Type 2” 
and “Type 3” shortcomings, to reflect the order in which they are listed above. 

Type 1 shortcomings are relatively easy to detect during the history-matching process as they 
impair a model’s ability to replicate the historical behaviour of a system. At the same time, 
minimized model-to-measurement misfit exhibits a high degree of temporal and/or spatial 
correlation, this being indicative of so-called “structural noise”.  

Unfortunately Type 2 and Type 3 shortcomings are harder to identify.  

Type 3 problems are a particularly worrisome outcome of inappropriate model simplification 
for the following reasons. 

• They do not necessarily incur model-to-measurement misfit. Moreover, the better is 
the fit between model outcomes and historical system behaviour, the greater are the 
surrogate roles that some parameters may need to adopt to achieve this fit. 

• The repercussions of Type 3 shortcomings are prediction-specific. For some 
predictions, model defects can be “calibrated out”. For other predictions made by the 
same model, calibration-induced predictive bias can be considerable. 

4.1.2 Exploration of Simplification-Induced Model Shortcomings 
Linear analysis can be employed to explore the existence and ramifications of the above 
model shortcomings. The first two are easily explored using linearized Bayes equation. The 
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third requires a slightly more complex form of linear analysis based on singular value 
decomposition of the Jacobian matrix computed during the model calibration process. All of 
these analyses can be performed using software available through the PEST and PyEMU 
suites. 

In many modelling contexts, including that which is the subject of the present report, boundary 
conditions are employed to simplify representations of processes which a modeller judges to 
be of secondary importance to a model’s primary decision-support role. Parameters 
associated with these boundary conditions are often calibration-adjustable. The relationships 
between some types of boundary parameters and real-world hydraulic properties are often 
somewhat abstract. The conductance of a MODFLOW-USG GHB (general head) or DRAIN 
boundary is one such parameter type. In contrast, other boundary specifications (for example 
the head ascribed to a fixed head boundary, or recharge rates associated with different land 
uses and soil types) may not be easily adjusted through model calibration. Their omission from 
the calibration process reduces the complexity of that process, the number of model runs that 
are required to implement it, and the threats to model numerical stability that adjustment of 
some parameters may pose. 

Fortunately, it is generally an easy matter to include boundary specifications in linear analysis, 
even if they are not estimated during model calibration. This is because they are not actually 
adjusted when undertaking linear analysis. Instead, each of them is varied incrementally 
during a sequence of model runs that is dedicated to calculating sensitivities of model outputs 
to these boundary specifications. If model run times are not too long, calculation of a suite of 
parameter and boundary condition sensitivities in this way is not a numerically demanding 
task. Nor is incremental variation of their values likely to precipitate model solution 
convergence failure. 

As is discussed in Chapter 2 of this document, once sensitivities have been calculated in this 
manner, the action of a model on its parameters (including boundary specifications that would 
not otherwise be considered as parameters) can be replaced by the action of a matrix on a 
vector. If sensitivities to these parameters have been acquired for model outputs that 
correspond to field measurements, and for model outputs that correspond to predictions, the 
linearized form of Bayes equation can be used to quantify the uncertainties of these 
predictions, with uncertainties in boundary specifications taken into account. Predictive 
uncertainties that prevail prior to history-matching (prior uncertainties), and those that prevail 
after history-matching (posterior uncertainties) are readily evaluated. Meanwhile, a related 
type of linear analysis can be used to explore predictive bias incurred through fixing boundary 
parameters at possibly erroneous values instead of estimating them. In undertaking all of 
these analyses, it is incumbent on a modeller to assign prior uncertainties to boundary 
condition parameters that reflect their roles in the simulation process, including their possibly 
abstract representation of more complex hydraulic processes. 

As has already been discussed, neither parameter values, observation values, nor the values 
of model outputs that correspond to observations or predictions, appear in the matrix 
equations that implement linear analysis. These equations include only model-output-to-
parameter sensitivities. Hence the repercussions of fixing a parameter can be examined 
without specifying the value at which it is fixed. The repercussions of model-to-measurement 
misfit can be examined without actually specifying the measured values that the model is 
unable to fit. The uncertainty of a prediction can be quantified without actually making the 
prediction. 

We now briefly describe how linear analysis can be turned to exploration of the above types 
of simplification-induced model shortcomings. 
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4.1.2.1 Type 1 Shortcomings 
Type 1 shortcomings express the inability of a simplified model to fit a calibration dataset as 
well as a more complex model. 

Once a model has been calibrated, a modeller is aware of the fit that can be attained between 
the outputs of his/her model and the components of a calibration dataset. Normally model-to-
measurement misfit far exceeds that which would be expected to arise from measurement 
errors alone; misfit is more reflective of model inadequacies than it is of measurement noise. 
After calibrating a model, a modeller can back-calculate the amount of collective 
measurement/structural noise that engenders this same level of model-to-measurement misfit. 
This can then be included in linearized Bayes equation. Predictive uncertainties that arise from 
suboptimal model-to-measurement fit can then be calculated using this equation. So too can 
predictive uncertainties that accompany optimal model-to-measurement fits. By comparing the 
two, an estimate of the impact of Type 1 model shortcomings on the quantified uncertainties 
of decision-critical model predictions can be made. 

This strategy is approximate, as it does not account for temporal and spatial correlations 
exhibited by structural noise. Nevertheless it is adequate in many groundwater modelling 
circumstances. This is because the uncertainties of many model predictions are a product of 
information inadequacy rather than contamination of information by measurement or model 
errors. 

4.1.2.2 Type 2 Shortcomings 
A Type 2 shortcoming denotes a simple model’s inability to evaluate the full uncertainty of a 
prediction because of its failure to represent all facets of the system to which the prediction is 
sensitive. 

The impact of this shortcoming is easily assessed through inclusion in linear uncertainty 
analysis of parameters that are not included in more computationally demanding nonlinear 
uncertainty analysis. Using linearized Bayes equation, the posterior uncertainty of a decision-
critical prediction can first be calculated using parameters that are employed by the actual 
model. It can then be evaluated using the expanded set of parameters that is only available 
to linear analysis. The difference between these two uncertainties is a measure of the impact 
of Type 2 model shortcomings on the model’s ability to quantify the uncertainty of that 
particular prediction. 

4.1.2.3 Type 3 Shortcomings 
Type 3 shortcomings reflect the compensatory roles that some model parameters must play 
in order to accommodate the fact that other model parameters cannot be adjusted in order to 
achieve a good fit with a calibration dataset. In a decision-support model these fixed 
parameters may be real or notional. In the latter case they can be viewed as errors that are 
hardwired into the construction of a simplified model that would otherwise be represented as 
processes and associated parameters in a more complex model. As has been discussed 
above, the effect of these missing processes and parameters can often be imitated by 
appropriate parameterisation of simple model boundary conditions for the purpose of linear 
analysis. 

Singular value decomposition (SVD) is a process that, when undertaken on a Jacobian matrix, 
subdivides parameter space into two orthogonal subspaces. These subspaces are occupied 
by linear combinations of parameters rather than by individual parameters. Linear parameter 
combinations that belong to the “solution subspace” are adjusted during the history-matching 
process. Those that belong to the orthogonal-complementary “null subspace” do not need to 
be adjusted, as the calibration dataset does not inform them. It can be shown that calibration 
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based on singular value decomposition yields a parameter field of minimized error variance, 
and that SVD comprises an optimal decomposition of parameter space. 

Doherty (2015) and White et al (2014) show that model simplification can also be viewed as a 
form of parameter space decomposition. However, in contrast to SVD, this decomposition is 
unlikely to be optimal, for it requires that some combinations of parameters be adjusted that 
should not be adjusted according to the precepts of SVD, while other combinations of 
parameters cannot be adjusted which actually should be adjusted according to the precepts 
of SVD. Adjustment of the former set of parameters leads to “null space parameter 
entrainment”; this induces bias in some model predictions.  

Linear analysis based on SVD allows the extent of calibration-induced predictive bias to be 
assessed. As for linear analysis based on Bayes equation, only sensitivities and parameter 
covariance matrices are required for this analysis. The values of model parameters, model 
outputs and field measurements do not figure in the equations on which this form of linear 
analysis is based. All operations involve matrices and vectors; they are easily programmed 
and readily evaluated. 

4.1.2.4 Utility Software 
The analyses discussed above can be implemented using programs available through the 
PEST and PyEMU suites. Utility programs from the PEST suite were used in the analyses 
described herein. These programs are listed in Table 4.1. 

Program Role 

PPCOV_SVA Computes a covariance matrix based on a spatially variable variogram. 

PWTADJ2 Adjusts weights in a PEST control file to be commensurate with model-to-
measurement misfit achieved through a preceding calibration process. 

PREDUNC1 Employs the linearized form of Bayes equation to calculate the uncertainty 
of a model prediction. 

PREDUNC4 Computes contributions to the uncertainty of a prediction made by different 
parameter groups. 

PREDUNC7 Computes the posterior parameter covariance matrix. The diagonal 
elements of this matrix are the squares of posterior parameter standard 
deviations. 

PREDVAR1B Assesses calibration-induced predictive bias. 

SUPCALC Computes the dimensionality of the calibration solution space. 

Table 4.1 PEST-Suite utility programs used to perform linear analyses described herein. 

4.2 Application to the ODGAB Model 
4.2.1 General 
Features of the ODGAB model for which improvements were being considered in an upgraded 
model are outlined in Section 3.5. As has already been discussed, strategic simplification is 
an important constituent of decision-support model design, for dispensing with non-essential 
complexity can facilitate critical decision-support tasks such as data assimilation and 
uncertainty quantification. However the benefits of any compromise are associated with costs. 
The extent to which strategic simplifications are also shortcomings that may degrade the 
decision-support potential of a model can be analysed using the methodologies described 
above. This analysis can then provide a basis for improved model design, should this prove 
necessary. (It is worthy of note that the costs and benefits associated with a particular model 
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design feature do not remain static as technology and computing power increase, for data 
assimilation and uncertainty quantification can now be undertaken with more complex models 
than were possible in the past.)  

Implementation of linear methods that can analyse the potential limitations of the 
abovementioned ODGAB model features required the following steps. 

1. Parameters which represent potential model defects were introduced to the ODGAB 
model specifically for the purpose of linear analysis. These are referred to as “defect 
parameters” in the discussion that follows. 

2. These new parameters were assigned prior uncertainties that account for possible 
errors incurred by their use in place of more complex processes and accompanying 
parameters. 

3. The Jacobian matrix attained during the preceding model calibration process was 
expanded to include sensitivities of calibration-pertinent model outputs to these 
defect parameters. 

4. Sensitivities of decision-salient predictions with respect to existing and defect 
parameters were calculated using finite differences. 

5. Bayes equation was used to calculate the uncertainties of management-salient 
predictions with and without inclusion of defect parameters. The stochasticity 
attributed to measurement noise in this equation was evaluated to reflect model 
structural noise exposed as model-to-measurement misfit during the preceding 
calibration process. 

6. Linear analysis based on singular value decomposition (SVD) was used to evaluate 
the consequences for predictive bias of omission of defect parameters from the 
calibration process. (This is equivalent to fixing them at values that are possibly 
erroneous, as was effectively done when the ODGAB model was calibrated.) 

Some implementation details as they pertain to features of the ODGAB model that were 
discussed above are now briefly presented. 

4.2.2 Recharge Proximal to the North Western Model Boundary 
Diffuse recharge near the north western boundary of the ODGAB model where the J-K aquifer 
outcrops was declared as adjustable. Three parameters were introduced to the ODGAB model 
to represent this recharge. A single zonal parameter encapsulated most of this outcrop area; 
for the purpose of linear analysis it was assigned a prior uncertainty that supports a maximum 
recharge rate of about 5 mm/year.  

Two smaller model recharge zones were also defined within the J-K Aquifer outcrop area - 
one for the Finke River (5 model cells) and the other for the Plenty River (6 model cells); see 
Figure 3.5.  Uncertainties assigned to these zones allow a maximum recharge rate of 85 mm/yr 
in the former case and 9 mm/yr in the latter case. These recharge rates are smaller than are 
possible under the wet-season beds of the rivers themselves; they are scaled to account for 
the size of model cells which contain these beds.  

4.2.3 Inflow from the Greater GAB 
A new parameter was introduced to the ODGAB model whose function is to uniformly raise or 
lower heads along the fixed head boundary that defines the north eastern edge of the model 
domain. This boundary simulates inflow of upgradient GAB waters. This new parameter was 
assigned a prior standard deviation of 5 m. (Recall that in linear analysis this boundary is not 
actually raised or lowered by this amount. It is raised incrementally for the purpose of 
calculating sensitivities of model outputs to its elevation. The prior standard deviation of 5 m 
is used in matrix equations which implement linear analysis.) 
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4.2.4 No-Flow Status of Southern and Western Model Boundaries 
Recharge zones were introduced along what were previously no-flow boundaries at the south 
and south western edges of the ODGAB model. Parameters associated with these zones 
simulate the possibility of water movement across these boundary segments to neighbouring 
basins. These zones are depicted in Figure 3.5. The prior uncertainty ascribed to each zonal 
recharge parameter was informed by expert-knowledge of maximum possible inflows or 
outflows along respective boundary segments. 

It is reiterated that linear analysis does not require that these inflows/outflows be actually 
provided to the model, and that the model be re-calibrated to accommodate them. It requires 
only that the sensitivities of model outputs with respect to these possible inflows/outflows be 
evaluated, and that the range of possible water exchange rates be reflected in the prior 
uncertainties that are assigned to pertinent parameters in the matrix equations which 
implement linear analysis. Accommodation by other parameters of these inflows in notional 
model re-calibration is implicit in these linear equations. 

4.2.5 Other Parameters  
All of the calibration-adjustable parameters that are described in the previous chapter of this 
report were retained in the ODGAB model for the purpose of linear analysis. They were all 
assigned prior uncertainties that are in accordance with hydrogeological expectations. 
Covariance matrices were ascribed to pilot point parameters in order to account for spatial 
correlation between them. For the sake of brevity, details of these prior parameter 
uncertainties are omitted from the present discussion.  

4.3 Some Outcomes of Linear Analysis 
4.3.1 Dimensionality of The Solution Space 
The PEST SUPCALC utility employs singular value decomposition to compute the 
dimensionality of the calibration solution space. This is equivalent to the number of items of 
useable information that are resident in a calibration dataset. It is also equivalent to the number 
of combinations of parameters that are uniquely estimable on the basis of that dataset. 

Despite the fact that the calibration dataset is comprised of 21382 observations, SUPCALC 
evaluated a solution space dimensionality of about 121. 

The size of the solution space that can be informed by a measurement dataset is influenced 
by the amount of noise that accompanies this dataset. In calculations comprising the present 
analysis, this was inflated by structural noise whose magnitude was gleaned from the level of 
model-to-measurement misfit that remained after calibration of the ODGAB model. SUPCALC 
was also asked to estimate the dimensionality of the calibration solution space using estimates 
of measurement noise that omit contributions from structural noise. Its revised estimate of 
solution space dimensionality is 160. 

A higher dimensional solution space promulgates lower posterior uncertainties of some model 
parameters and some model predictions. The above result shows that Type 1 model 
shortcomings can reduce the dimensionality of the solution space. This can deliver increased 
uncertainties for some model parameters and some model predictions. However it is important 
to bear in mind that Type 1 model shortcomings affect some predictions more than others. 
They have little effect on predictions whose uncertainties reflect lack of information in a 
calibration dataset, rather than contamination of that information by structural noise. 
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4.3.2 Parameter Uncertainty 
Estimates of posterior parameter uncertainty can be readily made using linearized Bayes 
equation. Doherty and Hunt (2009) describe a mappable statistic which they refer to as 
“relative parameter uncertainty variance reduction” (RPUVR). (Recall that variance is the 
square of standard deviation, and that standard deviation is a measure of uncertainty.) Every 
model parameter can be assigned its own RPUVR value; it varies between 0.0 and 1.0. A 
value of 0.0 indicates that the corresponding parameter enjoys no reduction of uncertainty 
through history-matching; its posterior uncertainty is thus the same as its prior uncertainty. In 
contrast, an RPUVR value that approaches 1.0 indicates a small posterior parameter 
uncertainty relative to its prior uncertainty. The calibration dataset is therefore rich in 
information pertaining to this parameter. 

Figures 4.1  and 4.2 map RPUVR (with structural noise taken into account) of horizontal 
hydraulic conductivity and specific storage of layer 3 of the ODGAB model. The locations of 
points which contributed head, drawdown and transmissivity observations to the calibration 
dataset are superimposed on these figures. A strong relationship between data density and 
parameter uncertainty reduction is obvious from these figures. 
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4.3.3 Predictive Uncertainty 

In this and subsequent subsections of this report we examine a single prediction. This 
prediction is the maximum drawdown (relative to pre-development conditions) in the J-K 
Aquifer under any spring in 2084. This is the time at which modelled extraction from Olympic 
Dam wellfields ceases. The value of this prediction made by the calibrated model is 3.27 m. 

Linearized Bayesian analysis (with structural noise taken into account) yields the outcomes 
presented in Table 4.2.  

Quantity Value 

Value of prediction 3.27 m 

Prior standard deviation 1.55 m 

Prior variance 2.39 m2 

Posterior standard deviation 0.63 m 

Posterior variance 0.39 m2 

Table 4.2 Outcomes of linear uncertainty analysis as they pertain to maximum layer 3 drawdown 
under any spring. 

We take this opportunity to remind the reader of the assumptions on which linearized Bayesian 
analysis is based. These are: 

• Model behaviour with respect to its parameters is linear. 
• All probability distributions (those pertaining to parameters, predictions and 

measurement noise) are multiGaussian. 

All of these assumptions are violated by the behaviour and properties of natural systems. 
Furthermore, because drawdown has a lower bound of 0.0, it is unlikely to possess a 
probability distribution that is symmetrical with respect to its mean. The uncertainties tabulated 
in Table 4.2 must therefore be interpreted as approximate. 

Using linearized Bayes equation, it is a simple matter to repeat the above calculations under 
the assumption that measurement/structural noise is zero. This establishes the extent to which 
the uncertainty of the above prediction is an outcome of lack of information within the 
calibration dataset, rather than contamination of that information by measurement noise 
and/or model imperfections. It is found that the no-noise posterior standard deviation of 
maximum subspring drawdown is 0.36 m. Hence more than half of the posterior uncertainty 
of this prediction arises from information insufficiency.  

A repetition of the above calculation with measurement noise awarded stochastic properties 
that are in accordance with those expected from field measurements yields a standard 
deviation of predictive uncertainty of about 0.5 m. 

4.3.3 Parameter Contributions to Predictive Uncertainty 
Figure 4.3 shows contributions made by different parameter types to the uncertainty variance 
of maximum predicted subspring drawdown in 2084. Recall from Table 4.2 that the prior 
variance of this prediction is 2.39 m2. Contributions to variance, rather than contributions to 
standard deviation, are graphed in Figure 4.2 because contributions to prior predictive 
variance are additive. The same does not apply to prior standard deviations. Nor does it apply 
to either posterior variances or posterior standard deviations. 
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Figure 4. Contributions made by different parameter types to the uncertainty variance of 
maximum predicted subspring drawdown in the J-K Aquifer in 2084. The back row pertains to 
the prior uncertainty of the prediction while the front row pertains to its posterior uncertainty. 

As is explained earlier in this report, we define the “contribution to predictive uncertainty” of a 
parameter group as the uncertainty of a prediction of interest as calculated using all adjustable 
parameters minus the uncertainty of that same prediction when calculated under the 
assumption that the values of all members of that parameter group are perfectly known; that 
is, all members of the parameter group are assumed to possess prior uncertainties of zero. 

The parameter groups that are featured in Figure 4.3 are, from left to right: 

• horizontal hydraulic conductivity of the J-K Aquifer (that is, model layer 3); 
• specific storage of the J-K Aquifer; 
• vertical hydraulic conductivity of aquitards overlying the J-K Aquifer (that is, model 

layers 1 and 2); 
• specific storage of aquitards overlying the J-K Aquifer; 
• conductances ascribed to MODFLOW-USG DRAIN cells which govern outflow to 

springs from the J-K Aquifer, and affect artesian pressures within the J-K Aquifer 
around discharge areas; 

• maximum rate of evapotranspiration of water which migrates vertically from the J-K 
aquifer to the surface in the north western part of the ODGAB model domain; 

• heads ascribed to the eastern fixed head boundary that connects the J-K Aquifer to 
the wider GAB; 

• potential recharge/discharge along no-flow southern and western margins of the 
ODGAB model domain; 

• diffuse and river recharge to the J-K aquifer where it outcrops in proximity to the 
north western boundary of the ODGAB model domain. 

The last three of the above parameter types are so-called “defect parameters” for the purpose 
of the current analysis. 

It is obvious from Figure 4.3 that by far the largest contributor to the uncertainty of predicted 
subspring drawdown is the hydraulic conductivity of the J-K Aquifer. This arises from the 
influence of hydraulic conductivity on drawdown propagation, its propensity for spatial 
variability, and the range of values that it may take. Specific storage of the J-K aquifer makes 
a much smaller contribution to the uncertainty of this prediction, possibly because heads near 
springs have begun to stabilize by 2084. Hydraulic properties of the aquitard which overlies 
the J-K aquifer govern movement of water to the surface where it is lost to evapotranspiration. 
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Water that is lost from the J-K Aquifer through this mechanism is not available for spring flow. 
This explains the contribution made by aquitard parameters to the uncertainties of subspring 
drawdown predictions. 

The following is also apparent from Figure 4.3. 

• Contributions to subspring drawdown uncertainty made by J-K Aquifer properties, 
and by the hydraulic properties of the overlying aquitard, are considerably reduced 
through history-matching. 

• Model defect parameters contribute little to either the prior or posterior uncertainties 
of subspring drawdown predictions. 

Table 4.2 lists contributions made by model defect parameters to the uncertainty of the 2084 
subspring drawdown predictions in terms of standard deviation rather than variance. (Note 
that these are not additive; hence the value assigned to “all of the above” is not the sum of its 
parts.) The small values of these contributions are, once again, abundantly clear. 

Parameter type Contribution to posterior uncertainty standard 
deviation of predicted drawdown (m) 

Eastern fixed heads 0.01 

Southern and western 
inflows/outflows 

0.0023 

North western recharge 0.00083 

All of the above 0.013 

Table 4.2 Contributions made by model defect parameters to maximum subspring drawdown 
uncertainty in 2084. The total standard deviation of this prediction is 0.63 m. 

4.3.4 Calibration-Induced Predictive Bias 
The PEST PREDVAR1B utility evaluates the potential for error in user-specified predictions 
induced by inappropriate model simplification. These are the outcomes of Type 3 model 
shortcomings. Predictive bias can occur when some parameters adopt compensatory roles 
during model calibration in order for model outputs to attain good fits with a calibration dataset 
when model defect parameters are fixed at possibly erroneous values. 

Table 4.3 tabulates the standard deviation of potential error incurred through this mechanism 
in the prediction of maximum subspring drawdown in 2084. (Note that these contributions to 
predictive error standard deviation are not additive; hence the value assigned to “all of the 
above” is not the sum of the parts.) 

Parameter type Contribution to posterior error standard deviation of 
predicted drawdown (m) 

Eastern fixed heads 0.001 

Southern and western 
inflows/outflows 

0.0008 

North western recharges 0.017 

All of the above 0.018 

Table 4.3 Standard deviations of possible predictive error incurred by fixing model defect 
parameters at possibly erroneous values. 

Like the numbers that are recorded in the second column of Table 4.2, those that are recorded 
in the second column of Table 4.3 are small. They are, in fact, calculated using the same 
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quantities. These are sensitivities of model outputs to parameters, prior parameter standard 
deviations, and a statistical characterisation of measurement noise that also reflects structural 
noise exposed through the model calibration process. However these quantities are used in 
different ways in the calculations on which these two tables are based. The contents of Table 
4.2 are calculated using a linearized form of Bayes equation. In contrast, those of Table 4.3 
emerge from singular value decomposition of the Jacobian matrix that is a linearized 
representation of the action of the model on its parameters as the model is calibrated. 

4.3.5 Computational Burden 
We conclude this chapter with a few words on the computational cost of computing the 
quantities that are tabulated and graphed herein. 

As has been described, matrix equations which implement linear analysis are based on 
sensitivities of model outputs to model parameters. Model outputs of interest are those which 
correspond to measurements which comprise a calibration dataset, as well as predictions of 
future system behaviour. Sensitivities are calculated by varying each parameter incrementally 
from its calibrated or (for model defect parameters) fixed value, and then running the model. 
For the purpose of linear analysis, the ODGAB model was endowed with 1423 parameters. 
Calculation of sensitivities therefore required that 1424 model runs be undertaken. (The extra 
model run featured calibrated and fixed parameter values.) All of these model runs included a 
steady state stress period, followed by a transient simulation spanning the period 1918 to 
2084. 

Once sensitivities are available, the computational cost of evaluating linearized Bayes 
equation, and of undertaking singular value decomposition on a sensitivity matrix, is small. 
Calculations that are pictured and tabulated in this chapter are the outcome of a few minutes 
numerical work. 

Because the complex environmental processes that are simulated by a numerical model are 
not actually linear, analyses that are based on matrix operations are approximate. This is the 
price to be paid for numerical efficiency. However, it is salient to ponder how much numerical 
work would have been required to undertake the analyses that are documented herein using 
nonlinear methods. 

Evaluation of the prior uncertainty of a prediction would have required that the model be run 
many times. The parameter set employed on each model run would have comprised a sample 
of the prior parameter probability distribution. Evaluation of parameter contributions to 
uncertainty would have required repetition of this process with different groups of parameters 
held fixed. Differences in predictive uncertainties, with and without parameters held fixed, 
would then have been used to calculate parameter contributions to these uncertainties. It 
would have been necessary for the number of model runs employed for predictive uncertainty 
evaluation to be sufficient for the evaluated uncertainty, and for uncertainty differences, to 
stabilize. 

For evaluation of parameter contributions to the post-calibration uncertainty of a prediction, it 
would have been necessary to repeat the above process using samples from the posterior 
parameter probability distribution rather than from the prior parameter probability distribution. 
Sampling of a posterior parameter probability distribution is a numerically difficult undertaking. 
It requires that random parameter fields (samples of the prior parameter probability 
distribution, or samples of a linear approximation to the posterior parameter probability 
distribution) be adjusted until model outputs match field measurements. While methodologies 
such as ensemble smoothers can undertake this task, the model run burden can be high. 
Repetition of the parameter adjustment process with certain parameters held fixed would have 
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increased this burden dramatically. Subsequent evaluation of predictive uncertainty 
differences would have been approximate. 
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5. CONCLUSIONS 
5.1 Repercussions for the ODGAB Model 
Linear analyses that are documented in this report demonstrate that while simplifications that were 
embodied in the design of the ODGAB model advance its utility support potential in some ways, they 
may degrade that potential in other ways. Fortunately, linear analysis also demonstrates that 
degredation is only slight, and that it can be relatively easily addressed in next generation modelling. 

In particular, linear analysis shows that the design of some ODGAB model boundary conditions 
increases the uncertainties of some decision-critical model predictions. At the same time, they impair 
the capacity of the modelling process to quantify these uncertainties. This impairment arises from two 
sources, namely: 

• failure to endow these boundaries with a flexible parameterization scheme that 
characterizes uncertainties in their specifications; and 

• a propensity for calibration-adjustable non-boundary parameters to adopt compensatory 
roles during history-matching in order to accommodate the fixing of boundary specifications 
at possibly erroneous values.  

Because the consequence of these ODGAB model design features for management-salient 
predictions are only slight, they do not invalidate use of the model. This in itself is a useful outcome 
of the analyses discussed herein. Nevertheless, design of these boundary conditions can, and will, 
be improved in next generation modelling. Meanwhile, analyses documented herein show that the 
decision-support utility of an improved model will not suffer if these boundary conditions retain their 
somewhat abstract roles. The need to ensure that this is done in a way that allows quantification of 
abstraction-incurred predictive uncertainties is a challenge that faces the design of the improved 
model. This challenge is likely to be forgiving, as their contributions to the overall uncertainties of 
management-salient predictions do not appear to be large.  

5.2 General Conclusions 
The primary purpose of the present GMDSI report is to demonstrate tools and methodologies that are 
available to all modellers. These tools enable a modeller to inquire whether various aspects of a 
model’s design that may have been introduced to expedite its capacity to serve the imperatives of 
decision-support modelling, may actually impair it. 

For the ODGAB model, application of these methodologies suggests improvements in representation 
of some boundary conditions in subsequent versions of the model. At the same time, it shows that 
shortcomings in those aspects of its design which are the focus of the present report do little to impair 
its decision-support utility. 

There will be other modelling contexts where this is not the case. A modeller must then decide on an 
appropriate course of action. Where model simplification increases the uncertainties that a model 
ascribes to decision-critical predictions in ways that are visible and quantifiable through linear or 
nonlinear analysis, the modeller can decide whether he/she wishes to trade the cost and effort of 
increased model complexity against the reduced uncertainties that these will yield.  

Model simplifications which impair a model’s ability to quantify predictive uncertainty, while possibly 
increasing this uncertainty through introduction of unquantifiable predictive bias, are of greater 
concern. The propensity for model simplifications to introduce these kinds of problems can be 
examined through analyses described herein.  
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We began this report with the often-repeated assertion that “all models are wrong, but some are 
useful”. We pointed out that a designation of “fit for purpose” often replaces “useful” in reports which 
describe specific models.  

Modern methods of analysis allow us to go beyond this somewhat sententious statement of the 
obvious – that a numerical model constitutes a gross simplification of a real world system, and that 
this may erode the credibility of at least some of its predictions. 

Predictions made by groundwater models are indeed wrong. This is because these predictions are 
uncertain. However their uncertainties can, and should, be quantified. Indeed this is one of the goals 
of decision-support modelling. Attainment of this goal requires that a model be complex enough to 
represent facets of system behaviour that contribute to the uncertainties of decision-critical 
predictions. At the same time, the model must be simple enough, and numerically stable enough, to 
undertake the many model runs that are required for assimilation of information that has the capacity 
to reduce the uncertainties of these predictions.  

Model simplification may induce bias in some of its predictions. If possible, the potential for 
simplification-induced bias should be included in the uncertainties that are ascribed to these 
predictions. These, together with uncertainties that arise from simplicity-induced model-to-
measurement misfit, then becomes a cost of simplification – a cost that may erode its decision-support 
utility. However if simplicity-induced uncertainty is small compared with quantifiable uncertainties that 
arise from gaps in expert knowledge, and if a simplified model can more readily reduce these latter 
uncertainties through data assimilation than a complex model, the benefits of model simplification 
outweigh its costs.  

Decision support modelling should attempt to quantify uncertainties arising from all sources. These 
include information inadequacy, contamination of information by measurement error, and 
contamination of the process of model-based data assimilation by model inadequacies. This requires 
that a model include parameters that represent not only the properties of a simulated system, but also 
aspects of its design that may be subject to error, particularly those that replace processes that are 
not explicitly simulated by the model. Modern methods of data assimilation and uncertainty 
quantification can readily accommodate the large number of adjustable parameters that this may 
require. The numerical cost of quantifying real and model-induced uncertainties may therefore be 
relatively small. 

There will be occasions, however, where calibration-adjustable parameterisation of model 
simplifications may not be easy to achieve. On these occasions, linear analysis methodologies that 
are exemplified in this report offer a modeller an alternative means of achieving similar outcomes. 
Analysis of the costs incurred by various model simplification strategies then requires that pertinent 
model design features, such as boundary conditions that replace more complex environmental 
processes, be endowed with parameters that are varied incrementally during model runs that are 
dedicated to calculating sensitivities of model outputs to these features. The costs of these 
simplifications can then be evaluated by replacing the action of the model on its parameters by that 
of a matrix on a vector. At the same time, these costs can be put into a context – the context that 
matters most from a decision-support modelling point of view. This context is defined by the 
uncertainties of decision-critical predictions as they depend on availability and quality of data. 
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