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Preface  
The Groundwater Modelling Decision Support Initiative (GMDSI) is an industry-funded and 

industry-aligned project focused on improving the role that groundwater modelling plays in 

supporting environmental management and decision-making. Over the life of the project, it will 

document a number of examples of decision-support groundwater modelling. These 

documented worked examples will attempt to demonstrate that by following the scientific 

method, and by employing modern, computer-based approaches to data assimilation, the 

uncertainties associated with groundwater model predictions can be both quantified and 

reduced. With realistic confidence intervals associated with predictions of management 

interest, the risks associated with different courses of management action can be properly 

assessed before critical decisions are made.  

GMDSI worked example reports, one of which you are now reading, are deliberately different 

from other modelling reports. They do not describe all of the nuances of a particular study site. 

They do not provide every construction and deployment detail of a particular model. In fact, 

they are not written for modelling specialists at all. Instead, a GMDSI worked example report 

is written with a broader audience in mind. Its intention is to convey concepts, rather than to 

record details of model construction. In doing so, it attempts to raise its readers’ awareness of 

modelling and data-assimilation possibilities that may prove useful in their own groundwater 

management contexts. 

The decision-support challenges that are addressed by various GMDSI worked examples 

include the following: 

• assessing the reliability of a public water supply;  

• protection of a groundwater resource from contamination;  

• estimation of mine dewatering requirements; 

• assessing the environmental impacts of mining; and  

• management of aquifers threatened by salt water intrusion.  

In all cases the approach is the same. Management-salient model predictions are identified. 

Ways in which model-based data assimilation can be employed to quantify and reduce the 

uncertainties associated with these predictions are reported. Model design choices are 

explained in a way that modellers and non-modellers can understand.  

The authors of GMDSI worked example reports make no claim that the modelling work which 

they document cannot be improved. As all modellers know, time and resources available for 

modelling are always limited. The quality of data on which a model relies is always suspect. 

Modelling choices are always subjective, and are often made differently with the benefit of 

hindsight.  

What we do claim, however, is that the modelling work which we report has attempted to 

implement the scientific method to address challenges that are typical of those encountered 

on a day-to-day basis in groundwater management worldwide. 

As stated above, a worked example report purposefully omits many implementation details of 

the modelling and data assimilation processes that it describes. Its purpose is to demonstrate 

what can be done, rather than to explain how it is done. Those who are interested in technical 

details are referred to GMDSI modelling tutorials. A suite of these tutorials is being developed 

specifically to assist modellers in implementing workflows such as those that are described 

herein.  
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Glossary 
Anisotropy 

A condition whereby the properties of a system (such as hydraulic conductivity) are likely to 

show greater continuity in one direction than in another. At a smaller scale it describes a 

medium whose properties depend on direction. 

Bayesian analysis 

Methods that implement history-matching according to Bayes equation. These methods 

support calculation of the posterior probability distribution of one or many random variables 

from their prior probability distributions and a so-called “likelihood function” – a function that 

increases with goodness of model-to-measurement fit. 

Boundary condition 

The conditions within, or at the edge of, a model domain that allow water or solutes to enter 

or leave a simulated system. 

Boundary conductance 

The constant of proportionality that governs the rate of water movement across a model 

boundary in response to a head gradient imposed across it. 

Time-variant specified head (CHD) package 

A Dirichlet (i.e. “fixed head”) boundary condition implemented by MODFLOW in which the 

head can vary with time on a stress-period-by-stress-period basis. 

Covariance matrix 

A matrix is a two-dimensional array of numbers. A covariance matrix is a matrix that specifies 

the statistical properties of a collection of random variables - that is, the statistical properties 

of a random vector. The diagonal elements of a covariance matrix record the variances (i.e. 

squares of standard deviations) of individual variables. Off-diagonal matrix elements record 

covariances between pairs of variables. The term “covariance” refers to the degree of 

statistical inter-relatedness between a pair of random variables. 

Ensemble 

A collection of realisations of random parameters. 

Drain (DRN) package 

A one-way Cauchy boundary condition implemented by MODFLOW. Water can flow out of a 

model domain, but cannot enter a model domain through a DRN boundary condition.  

Evapotranspiration (EVT) package 

MODFLOW’s implementation of water withdrawal from a groundwater system whereby the 

extraction rate can increase, up to a user-supplied maximum, as the head approaches a user-

prescribed level from below.  

General head boundary (GHB) package 

This is MODFLOW parlance for a Cauchy boundary condition. Water flows into or out of a 

model domain in proportion to the difference between the head ascribed to the boundary and 



  

 

 

that calculated for neighbouring cells. The rate of water movement through the boundary in 

response to this head differential is governed by the conductance assigned to the boundary. 

Hydraulic conductivity 

The greater is the hydraulic conductivity of a porous medium, the greater is the amount of 

water that can flow through that medium in response to a head gradient.  

Jacobian matrix 

A matrix of partial derivatives (i.e. sensitivities) of model outputs (generally those that are 

matched with field measurements) with respect to model parameters.  

Matrix 

A two-dimensional array of numbers index by row and column. 

MODFLOW 

A family of public-domain, finite-difference groundwater models developed by the United 

States Geological Survey (USGS). 

MODFLOW package 

An item of simulation functionality that describes one aspect of the operation of a groundwater 

system, for example recharge or a boundary condition. The word “package” describes the 

computer code that implements this functionality, as well as its input and output file protocols. 

Null space 

In the parameter estimation context, this refers to combinations of parameters that have no 

effect on model outputs that are matched to field observations. These combinations of 

parameters are thus inestimable through the history-matching process. 

Objective function 

A measure of model-to-measurement misfit whose value is lowered as the fit between model 

outputs and field measurements improves. In many parameter estimation contexts the 

objective function is calculated as the sum of squared weighted residuals. 

Parameter 

In its most general sense, this is any model input that is adjusted in order to promulgate a 

better fit between model outputs and corresponding field measurements. Often, but not 

always, these inputs represent physical or chemical properties of the system that a model 

simulates. However there is no reason why they cannot also represent water or contaminant 

source strengths and locations. 

Phreatic surface 

The water table. 

Pilot point 

A type of spatial parameterisation device. A modeller, or a model-driver package such as 

PEST or PEST++, assigns values to a set of points which are distributed in two- or three-

dimensional space. A model pre-processor then undertakes spatial interpolation from these 

points to cells comprising the model grid or mesh. This allows parameter estimation software 

to ascribe hydraulic property values to a model on a pilot-point-by-pilot-point basis, while a 

model can accept these values on a model-cell-by-model-cell basis. The number of pilot points 

used to parameterise a model is generally far fewer than the number of model cells. 



  

 

 

Prior probability 

The pre-history-matching probability distribution of random variables (model parameters in the 

present context). Prior probability distributions are informed by expert knowledge, as well as 

by data gathered during site characterisation. 

Posterior probability 

The post-history-matching probability distribution of random variables (model parameters in 

the present context). These probability distributions are informed by expert knowledge, site 

characterisation studies, and measurements of the historical behaviour of a system.  

Probability density function 

A function that describes how likely it is that a random variable adopts different ranges of 

values. 

Probability distribution 

This term is often used interchangeably with “probability density function”. 

Quadtree mesh refinement 

This term refers to a means of creating fine rectilinear model cells from coarse rectilinear 

model cells by dividing them into four. Each of the subdivided cells can then be further 

subdivided into another four cells. However it is a design specification of a quadtree-refined 

grid that no cell within the domain of a model be connected to more than two neighbouring 

cells along any one of its edges. 

Realisation 

A random set of parameters. 

Regularisation 

The means through which a unique solution is sought to an ill-posed inverse problem. 

Regularisation methodologies fall into three broad categories, namely manual, Tikhonov and 

singular value decomposition. 

Residual 

The difference between a model output and a corresponding field measurement. 

Singular value decomposition (SVD) 

A matrix operation that creates orthogonal sets of vectors that span the input and output 

spaces of a matrix. When undertaken on a Jacobian matrix, SVD can subdivide parameter 

space into complementary, orthogonal subspaces; these are often referred to as the solution 

and null subspaces. Each of these subspaces is spanned by a set of orthogonal vectors. The 

null space of a Jacobian matrix is composed of combinations of parameters that have no effect 

on model outputs that are used in its calibration, and hence are inestimable. 

Solution space 

The orthogonal complement of the null space. This is defined by undertaking singular value 

decomposition on a Jacobian matrix. 

Specific storage 

The amount of water that is stored elastically in a cubic metre a porous medium when the 

head of water in which that medium is immersed rises by 1 metre. 



  

 

 

Specific yield 

The amount of accessible water that is stored in the pores of a porous medium per volume of 

that medium. 

Stochastic 

A stochastic variable is a random variable. 

Stress 

This term generally refers to those aspects of a groundwater model that cause water to move. 

They generally pertain to boundary conditions. User-specified heads along one side of a model 

domain, extraction from a well, and pervasive groundwater recharge, are all examples of 

groundwater stresses. 

Stress period 

The MODFLOW family of models employs this terminology to describe each member of a 

series of contiguous time intervals that collectively comprise the simulation time of a model.  

Tikhonov regularisation 

An ill-posed inverse problem achieves uniqueness by finding the set of parameters that 

departs least from a user-specified parameter condition, often one of parameter equality and 

hence spatial homogeneity. 

Vector 

A collection of numbers arranged in a column and indexed by their position in the column. 



  

 

 

Executive Summary 
This GMDSI report addresses a number of related issues. They include: 

• appropriate model complexity; 

• appropriate parameterisation complexity; 

• efficient model-based assimilation of information-rich data; and 

• linear analysis. 

The focus of modelling work that is reported herein is BHP’s Orebody 31 (OB31) situated in 

the Pilbara region of Western Australia. The environs of this mine have been the focus of a 

number of generations of modelling, some of which is described in the present report. Mining 

of OB31 commenced in 2016; however data collection and modelling took place for a number 

of years prior to that. 

The area is geologically complex. Iron ore is found in steeply dipping beds which are 

transected and offset by local faulting.  

One of the tasks with which pre-mine modelling was charged was that of predicting how much 

water must be pumped from the ground in order to keep the OB31 pit dry. This prediction has 

ramifications for the design of mine-support infrastructure. This infrastructure includes a 

pipeline to convey pumped water to a nearby dam; the diameter of the pipe must be adequate 

for the water that it must convey.  

Because the local geology is so complex, dewatering rate predictions are likely to be 

accompanied by considerable uncertainties. However, data were acquired that have the 

capacity to reduce these uncertainties to at least some extent. In late 2014, a series of 6 

constant-rate pumping tests of between 5 and 11 days duration were undertaken in order to 

gain some insights into the disposition and variability of subsurface hydraulic properties. 

Drawdowns and recoveries were measured in 21 observation wells. Collectively this dataset 

is referred to as “the CRT” (for “constant rate test”). 

Unfortunately, modelling which preceded that which is described herein had difficulty in 

assimilating these data. Part of the reason for this lay in their complexity of model design. 

Among their design criteria was the need for “accurate” three-dimensional portrayal of complex 

geology, as far as it was understood at the time of modelling. Two previous models that are 

discussed in this report each employed 7 layers for this reason; this resulted in lengthy run 

times. At the same time, parameterisation of these numerically complex models was based 

on a limited number of zones of piecewise hydraulic property constancy whose geometry 

reflected the presumed dispositions of known geological units. However, in order to 

accommodate evidence embedded in the CRT and other pumping-based datasets that 

hydraulic connections may cross the prevailing geological strike, a small number of elongate 

zones that transect local geology were introduced to the domains of these models at locations 

where it was thought that such structures may exist. 

Attempts at data assimilation based on this model design philosophy were somewhat 

disappointing. Model-to-measurement fits attained with the CRT dataset were not very good; 

hence information which was resident in that dataset was denied the opportunity to inform 

model parameters. The latter were too few in number, and were defined too inflexibly, to 

receive this information. Model predictions of pit dewatering requirements were too low. While 

attempts were made to quantify the post-calibration uncertainties associated with these 

predictions, failure to attain good fits with the calibration dataset, and parameter insufficiency, 

reduced the credibility of calculated uncertainty limits. 



  

 

 

In late 2020, GMDSI personnel “went back in time” in order to establish whether an alternative 

approach to decision-support modelling based on data assimilation may have allowed better 

use of CRT data, and may have promulgated better predictions of pit dewatering requirements.  

There are two major differences between the modelling approach that is described in the 

present report and that which preceded it. The first is the philosophy of model design. The 

model described herein was designed with history-matching in mind. Though simple in its 

construction, the model employs many parameters. Embodiment of prevailing hydrogeological 

concepts was not its primary parameterisation design criterion. Rather, its parameterisation 

scheme was designed to respond to the information content of a calibration dataset in flexible 

ways that support assimilation of these data by providing them with a blank canvas on which 

to draw. 

The second departure from previous modelling approaches is use of an efficient inversion 

methodology that enables data assimilation to be carried out at a relatively small cost in terms 

of model runs. This supports the use of many parameters, adding to the ability of the modelling 

workflow to assimilate information.  

Calibration of the new OB31 model introduced patterns of hydraulic property heterogeneity to 

the model domain that enable model outputs to match nuances of CRT drawdowns and 

recoveries very well indeed. Some aspects of these patterns can be readily associated with 

aspects of the prevailing geological model. Other aspects of these patterns have shapes and 

dispositions that suggest a structural origin. Other emergent parameter value patterns are 

more difficult to interpret. Nevertheless the inversion process from which they arose, and post-

calibration linear analysis, suggest that these patterns are worthy of being taken seriously. 

Although the locations and dispositions of three-dimensional heterogeneity projected onto a 

single model layer do not reproduce geological reality, the effects of this projected 

heterogeneity on pumping-induced drawdowns and recoveries are nevertheless real. 

The calibrated model was used to predict inflow to a hypothetical OB31 pit. Because the pit is 

dewatered by pumping from nearby bores, this prediction cannot be directly compared with 

real-world measurements. Nevertheless, it is somewhat gratifying to note that model-predicted 

inflows are similar to current pit dewatering rates. This may indeed be a coincidence. What is 

of greater importance, however, are suggestions arising from modelling described herein that 

large volumes of stored water have the ability to flow large distances through zones of 

connected permeability towards the pit dewatering system.  

Linear analysis was employed to associate uncertainties with predictions of pit inflow. These 

are no-doubt understated because of the relative simplicity of the model, and because of the 

proximity of model boundaries to the pit. Nevertheless, linear analysis effectively 

demonstrates the high information content of the CRT dataset with respect to predictions of 

pit dewatering requirements. Specifically, it suggests that this dataset carries about 200 

separate items of information. (Each such item of information has the capacity to assign a 

value to a unique linear combination of model parameters.) Furthermore, this information has 

the potential to impose significant reductions on uncertainties associated with dewatering rate 

predictions from those which arise from expert knowledge alone.  
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1. INTRODUCTION 

1.1 Background 
This GMDSI report begins by describing modelling work that was undertaken during 2014 and 

2015 to predict dewatering requirements for a planned open cut mine. (At the time of writing - 

early 2021 - the mine has been operating for over 4 years.) Despite attempts to faithfully 

represent prevailing geology, and to undertake rudimentary history-matching against 

pumping-induced drawdowns, dewatering rates were under-predicted by the model.  

The report then goes on to document modelling that was dedicated to extracting as much 

information as possible from time-varying drawdowns induced by pumping from 6 production 

bores. This modelling was able to expose permeable pathways that are likely to have a 

significant impact on mine dewatering rates. This revised modelling strategy employs 

inversion methodologies that were not available in 2015, but are available now.  

BHP extracts iron ore from the “Orebody 31” (i.e. OB31) deposit in the Pilbara region of 

Western Australia. Much of this ore lies below ambient groundwater levels in rocks of high 

permeability. The pit must be kept dry by extracting water from a series of nearby bores. Prior 

to the commencement of mining operations, predictions of dewatering requirements were 

required by BHP in order to obtain a pumping license, and in order to design a pipeline to 

convey extracted water to a dam which is situated 21 km away. 

Over a period of about six months, starting in December 2014, 6 pumping tests were 

undertaken in the vicinity of the proposed pit. The durations of these tests varied between 5 

days and 11 days. Drawdowns and recoveries were monitored in up to 21 observation wells. 

Collectively, these tests are referred to as “the CRT” (constant rate test), in technical reporting 

and in the present report.   

In 2014 and 2015, drawdown and recovery measurements comprising the CRT dataset were 

used to refine the parameterisation of a large, multi-purpose groundwater model. This model 

was built in order to assess pit dewatering requirements, and in order to assess the impacts 

of this dewatering on receptors of interest, some of which are up to 15 km from the mine. In 

order to reflect what was known of the prevailing geology, the model was complex, with its 

grid comprising 1,366,827 active cells disposed across seven layers. The geology is marked 

by steeply dipping beds, tightly folded into neighbouring anticlines and synclines. The 

lithologies which comprise these beds have markedly different hydraulic properties which vary 

along strike. The region is pervaded by a series of faults, the dispositions and hydraulic 

significance of which are only partially known.  

This complex local geology was represented rather awkwardly in the model because of the 

discretised nature of its finite-difference grid. Nevertheless, representation of geology, 

however cumbersome, was considered a fundamental precursor to good model performance. 

Like the model grid, parameterisation of the model was also designed to respect current 

understandings of local geology. Parameterisation was based on zones ascribed to discrete 

geological units and to a handful of discrete structural features that were represented in the 

model. To ease the burden of calibration, parameter numbers were kept low. During the 

calibration process, new parameters were introduced to the model by subdividing existing 

zones where it was thought this was needed in order to improve model-to-measurement fit. 

Model calibration was pursued through manual adjustment of parameter values. 

Unfortunately, it was not possible to obtain a particularly good fit between model outputs and 

CRT drawdowns and recoveries. The fit with this important component of the calibration 
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dataset was deemed to be good enough when its broad features were replicated. While it was 

recognised that some details of the drawdown and recovery time series may contain important 

information on connected near-pit permeability, these details could not be fit by the model. 

Part of the reason for this was deployment of a coarse parameterisation scheme based on an 

approximate representation of known and supposed geology. Though not openly stated, 

acceptance of failure to fit fine, but important, details of CRT drawdown and recovery was 

justified by the premise that a numerical groundwater model cannot be expected to fit every 

nuance of system behaviour, and that attempts to do so would constitute “overfitting”. If a 

choice had to be made between approximate replication of known and implied complex 

geology on the one hand, and fitting of a complex calibration dataset on the other hand, the 

former was implicitly decreed to be of greater importance.  

Further refinement of model parameterisation took place after conduction of a “hydrodynamic 

trial” (HDT) in the vicinity of the proposed pit. Three wells were pumped continuously over a 

period of about 3 months while drawdown was monitored in 26 observation wells; recovery 

was monitored for a further month. Observed drawdowns were much larger than for the CRT. 

Attempts to fit HDT drawdowns, and particularly recoveries, suggested the presence of 

connected transmissivities that cross prevailing geological strike. In doing so, they link the 

OB31 orebody to a regional aquifer. Their presence has the potential to markedly increase 

estimates of pit dewatering requirements. 

By introducing cross-strike linear zones of enhanced transmissivity, and by employing a 

combination of manual and machine-based history-matching, reasonable fits with the HDT 

dataset were attained using a model of reduced areal footprint but which retained the same 7 

layers as the original model. However model-to-measurement fits were far from perfect. 

Nevertheless, they allowed the model to make estimates of pit dewatering requirements that 

are better aligned with those that are now being experienced. 

1.2 The Present Study 

At the suggestion of BHP personnel, GMDSI personnel reinterpreted 2014 CRT data using a 

different modelling approach from that which had previously been implemented at the OB31 

site. Specifically, the aims of the study were as follows: 

1. To investigate whether information that is resident in the CRT dataset can shed light 

on aspects of local hydrogeology that impact mine dewatering requirements if these 

data are interpreted using modern inversion technology;  

2. To inquire whether decision-support modelling workflows at similar sites may be in 

need of revision. Of particular relevance is the relationship between a conceptual 

model and a numerical model.  

Conventional wisdom dictates that development of a detailed conceptual model precedes that 

of a numerical model, and that the role of the latter is to give numerical voice to the former. 

The present study suggests that conceptual and numerical model development should be 

seen as parallel rather than serial activities. Attempts to interpret CRT data using a numerical 

model that embodied current hydrogeological concepts proved fruitless because the history-

matching process did not allow the latter to be questioned. This, and an unstated premise that 

underfitting of data constitutes a valid means of avoiding predictive bias, precluded the 

possibility that the history-matching process could result in anything other than vindication of 

an inadequate conceptual model. 

The present study suggests that the concept of a “conceptual model” should be broadened. 

As is discussed herein, a primary specification of decision-support modelling is that it must 

provide the means to assimilate data that has the potential to reduce the uncertainties of 
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management-critical predictions. The design of a modelling workflow, and of the numerical 

model through which that workflow is implemented, must include the means by which such 

data can indeed be assimilated. The numerical model must be imbued with a parameterisation 

scheme that can provide receptacles for information that is resident in these data. At the same 

time, the history-matching process through which parameters are estimated must be capable 

of accommodating “surprises”. In doing so, it must invite, rather than suppress, the introduction 

of unusual parameter shapes and values. Where these lack geological credibility, they may 

indicate that parameters are adopting roles that compensate for numerical (and hence 

conceptual) model defects; the latter can then be investigated. Alternatively, they may indicate 

the need to revise concepts which define “geological credibility”.  

Another important aspect of decision-support model design that is exposed by the current 

study is the need for a decision-support model to possess many parameters – generally many 

more parameters than can be estimated uniquely. Inflexible parameterisation schemes based 

on immovable zones of piecewise parameter constancy that respect questionable geological 

boundaries that are poorly replicated by a coarse numerical grid should be eschewed in favour 

of a multitude of pilot points, or even cell-by-cell parameterisation. When using the latter 

parameterisation schemes, spatial patterns that represent current geological concepts can be 

suggested (rather than decreed) through design of an appropriate regularisation methodology. 

Prevailing concepts can then be respected at the same time as they can be challenged.  

This study also demonstrates that while the geology of a particular site may be complex, it 

does not follow that a decision-support numerical model focussed on that site should be 

complex. Model complexity induces long run times, and provides fertile ground for numerical 

instability. These erode a model’s ability to be used in partnership with programs from the 

PEST and PEST++ suites that can assimilate information that is resident in historical 

measurements of system state and fluxes.  

However, problems associated with excessive model complexity go deeper than this. 

Complexity expresses detail – detail that may not be relevant to a particular management 

issue. Detail is uncertain; hence it must either be represented stochastically or suffer 

misrepresentation. Stochastic representation of “picture perfect” geology in ways that allow a 

model to replicate past system behaviour constitutes an extremely demanding numerical task.  

An alternative approach to decision-support modelling at a particular site is to forego the 

expression of “geologically realistic” detail in favour of a more abstract representation of only 

those aspects of geology that are salient to a particular management problem. If such a model 

can be populated by a flexible parameter field that enables it to reproduce the past and 

constrain the future within quantifiable uncertainty limits, then this approach serves the 

decision support process far better than construction of a “realistic” model which can do 

neither.  

Finally, this study demonstrates that the decision-support process is best served by a 

modelling workflow that is designed to address a specific management issue. A decision 

pertaining to the inclusion or omission of a specific subsurface feature or process in a model’s 

construction and parameterisation must follow an assessment of the costs and benefits of its 

inclusion or omission. Without a defined modelling purpose, costs and benefits have no 

reference point. In contrast, if a model is burdened with the onerous responsibility of 

“simulating a system”, then it can dispense with little complexity. This will compromise its ability 

to make predictions of system behaviour whose potential for error has been minimized through 

assimilation of pertinent data. Even more importantly, it will compromise its ability to quantify 

the possible magnitude of that error. 
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The conceptual model on which a decision-support numerical modelling workflow rests cannot 

ignore these concepts. It must include the notion that it is open to challenge, and subject to 

revision. It must form the basis for design of a numerical modelling process that enables 

flexible history-matching that blends information born of expert knowledge with that which is 

resident in measurements of system behaviour. To render this process tractable, a conceptual 

model should provide as much guidance on what should be omitted from a numerical model 

as it does on what should be included.  

1.3 This Report 
This report is organised as follows.  

Chapter 2 expands the discussion that was started above on the role of the conceptual model 

in decision-support modelling practice. It then discusses history-matching in general, and the 

role of model calibration in particular. It also provides brief coverage of a number of topics that 

are related to history-matching and which are pertinent to the work which is reported herein. 

Chapter 3 describes the study area, and presents a short history of decision-support modelling 

that has been undertaken to address its issues.  

Chapter 4 describes the model that is the focus of the current study. It also describes its 

parameterisation, its calibration, and use of the calibrated model to predictions pit dewatering 

requirements. Using linear analysis, the uncertainty associated with this prediction is 

examined, as are uncertainties associated with estimated parameters.  

Chapter 5 concludes this report with a brief discussion of decision-support modelling principles 

that are illustrated by OB31 modelling.  
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2. DECISION-SUPPORT MODELLING: SOME 
PRINCIPLES 

2.1 The Decision Support Imperative 

The role of groundwater modelling in decision support is discussed in other GMDSI reports, 

as well as in papers such as Freeze et al (1990), Doherty and Simmons (2013) and Doherty 

and Moore (2019). Its task is to: 

• Make management-salient predictions of groundwater behaviour; 

• Quantify the uncertainties of these predictions so that decision-makers are fully 

acquainted with the risks that accompany a contemplated course of management 

action; 

• Where necessary, reduce the uncertainties of management-salient predictions by 

assimilation of pertinent data. 

The above imperatives set the context for the many design choices that a modeller must make 

as he/she builds a decision-support model. It is important to note that these imperatives do 

not include the necessity for a model to provide faithful replication of underground processes. 

The decision-support utility of the modelling process rises in proportion to its ability to provide 

receptacles for decision-pertinent information. The existence of these receptacles is an 

outcome of a model’s ability to simulate, albeit in an approximate and incomplete manner, 

processes that affect management. The number of these receptacles, and their integrity as 

repositories of decision-pertinent information, may be related only loosely to a model’s fidelity 

as a simulator. 

Simulation requires that values be assigned to parameters. Some of these values determine 

simulation outcomes. In many cases they reflect hydraulic properties of the subsurface. As 

such, they may be partially informed by site characterisation studies. They may also be 

partially informed by history-matching. Knowledge and data which informs management-

salient parameters informs management-salient predictions. Parameters of a model can 

therefore be viewed as receptacles for management-salient information. It is the task of the 

decision-support modelling process to capture this information and use it. By definition, 

information is “used” when it reduces uncertainty.  

It follows that a model’s parameters are key to its decision-support role. A model’s awkward 

attempts at simulation bring parameters into existence. Integrity of simulation need only be 

such as to support the integrity of parameters as receptacles for decision-relevant information. 

The task of decision-support modelling is to deliver information to these receptacles, and then 

from these receptacles to management-salient predictions. This does not happen as a 

convenient by-product of a model’s ability to simulate subsurface processes, for no model can 

simulate subsurface processes very well. Instead this task should be woven into the fabric of 

the decision-support modelling workflow as it is applied at any particular site. 

2.2 The Conceptual Model 
Conventional modelling wisdom dictates that a groundwater model give numerical voice to a 

conceptual model. Ideally, a conceptual model is the product of hydrogeological 

investigations. The more extensive are these investigations, the more detailed is likely to be 

the conceptual model.  
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At the heart of the conceptual model is a geological model. A geological model specifies 

(among other things):  

• rock types that prevail within a study area; 

• juxtapositional relationships between different rock types; 

• the nature and depth of weathering; 

• the presence or secondary features such as faults that can alter juxtapositional 

relationships, and that can introduce connected alterations to hydraulic properties; 

• hydraulic properties associated with different geological media; 

• the locations and mechanisms of recharge and discharge; 

• the nature of interactions between surface and subsurface waters. 

Where groundwater modelling supports management of mining-related activities, the 

geological model that is associated with a conceptual model may be detailed. Where geology 

is complex, so too may be the conceptual model.  

It is tempting to assume that detailed characterisation of geology provides the groundwater 

modelling process with a “head start”, and that its predictions therefore have the potential to 

be reasonably accurate. It may therefore be surmised that it is incumbent on a modeller to 

represent what is known of local geology as well as possible in his/her model. Failure to do so 

may prompt severe criticism of his/her model on the basis that if it does not replicate 

geometrical relationships between rocks, then it cannot replicate flow of water through them. 

There may be modelling contexts where this argument holds true. There are also those where 

it does not hold true.  

Groundwater flow is predominantly horizontal. This can be easy to forget, as most vertical 

sections through geological and groundwater models undergo significant vertical exaggeration 

before display. Where horizontal aquitards create vertical head differences, and where vertical 

head differences are salient to a prediction, then obviously the vertical direction matters. 

However in other cases, decision-salient predictions, and the uncertainties associated 

therewith, may be more affected by lateral hydraulic property variations than by vertical 

hydraulic property variations. If this is the case, the need for a model to provide faithful 

representation of vertical geological connections fades. This is replaced by the necessity to 

represent lateral variations in hydraulic properties that can help or hinder the flow of 

groundwater in the horizontal direction.  

It must also be recalled that uniform colours on a geological map or section do not imply 

uniform hydraulic properties. While shale is less permeable than dolomite, the hydraulic 

properties of both of these rocks can vary considerably with the extent to which they have 

been subjected to diagenetic and/or weathering-based alteration. Furthermore, where an area 

has been subjected to intense deformation, continuity of aquifers or aquitards may be 

interrupted in unknown ways in unknown places, this impairing their capacity to assist or hinder 

the flow of water. The presence of faults, dykes and other linear features adds even greater 

complexity to an already complex situation. Faults can enable flow parallel to their planes while 

interrupting flow in perpendicular directions. 

Because they are incompletely known, hydraulic properties should be represented 

probabilistically in a groundwater model. Prior to history-matching, the probability distribution 

that characterises them is referred to as their “prior probability distribution”. Ideally, this 

distribution is a distillation of expert hydrogeological knowledge. As such, it constitutes an 

important component of any conceptual model. The prior probability distribution of hydraulic 

properties reflects their range of possible values, as well as the lengths and directions over 

which anomalous properties are likely to exhibit spatial correlation. Conceptually, it is not a 
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difficult matter to populate a model with hydraulic property realisations that constitute samples 

of this prior probability distribution. Using modern history-matching techniques, these 

realisations can then be modified so that pertinent model outputs conform with measurements 

of system state. Samples of the prior parameter probability distribution are thus moulded into 

samples of the posterior parameter probability distribution. If the model is then run using each 

of these samples, the posterior probability distribution of a decision-salient prediction can be 

evaluated. The imperatives of decision-support modelling are thereby served. 

A conceptual model must be flexible enough to identify contexts where the above approach to 

decision-support modelling is impractical. This can occur where: 

• the geology is extremely complex; 

• the continuity of geological units is unknown; 

• intra-formational heterogeneity is high; 

• there is a high likelihood that structural features may offset geological units, and/or 

interrupt groundwater flow; 

• the disposition of model grid cells is too coarse to properly represent complex 

geological juxtapositional relationships. 

In cases such as these, a more useful conceptual model may comprise a relatively simple 

stochastic representation of management-pertinent hydraulic property variability based on 

parameters whose values are readily adjusted through history-matching while retaining the 

ability to exhibit post-history-matching stochastic variability. This is the approach that is 

adopted in the present study.  

2.3 History Matching 

2.3.1 Options 

History-matching provides the means through which information that is resident in system 

behaviour can inform model parameters. However certain tenets must be followed if history-

matching is to be maximally effective in achieving this outcome, particularly in complex 

geological environments where hydraulic property uncertainties are high. 

The first tenet is that a model should be endowed with many parameters. This grants the 

history-matching process flexibility when responding to information that is resident in field 

measurements of system behaviour. (It was not so long ago that modellers were advised 

against “over-parameterisation” on the basis that it would lead to over-fitting of field 

measurements, and that over-fitting would incur predictive bias. Modern methods of 

regularised inversion make this advice irrelevant at best, and harmful at worst.) 

As already mentioned, two different approaches to history-matching are available to 

groundwater modellers. These are not to be seen as competing, but as complementary. Each 

relies on the premise that subsurface hydraulic property variability is more complex than can 

be represented uniquely in a model. History-matching therefore endeavours to capture as 

much of this variability as the calibration dataset allows. That which cannot be captured must 

be represented probabilistically. This serves the dual decision-support imperatives of reducing 

and quantifying predictive uncertainty. 

Bayesian methods of history-matching eschew uniqueness. As described above, they require 

that a modeller generate random samples of the prior parameter probability distribution. These 

parameter fields are then modified until pertinent model outputs fit the calibration dataset. 

They thereby comprise samples of the posterior parameter probability distribution. The 

PESTPP-IES ensemble smoother implements history-matching according to this philosophy. 

See White (2018) and references cited therein for further details. 
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In contrast, inversion methods seek a single parameter field which fits the calibration dataset 

well. Their quest for uniqueness is not, however, a quest for correctness. Instead, uniqueness 

is attained by purposefully minimizing their potential for incorrectness. This potential can still 

be high where hydraulic property variability is complex, and where the information content of 

a calibration dataset is low. Nevertheless, a spatially-simplified parameter field that lies 

somewhere near the centre of the posterior parameter probability distribution can achieve this 

status of minimised error variance. Predictions that are based on this parameter field inherit 

this status. Parameter and predictive error variance can then be quantified through post-

calibration uncertainty analysis. 

To put it another way, Bayesian methods explore the “heterogeneity which CAN exist”, that is 

compatible with field measurements of system behaviour. In contrast, inversion methods seek 

to define the “heterogeneity which MUST exist” in order to explain observations of system 

behaviour. In the geological context which is the subject of the present report, wherein prior 

parameter probability distributions are only vaguely known, inversion offers a suitable 

approach to history matching because: 

• it often allows better fits to be attained with informative nuances of field datasets 

than do Bayesian methods; 

• it serves the investigative role that history-matching must play in complex geological 

contexts. 

2.3.2 Regularisation 

“Regularisation” can be loosely defined as “whatever it takes to attain uniqueness”.  

In the following pages of this report we discuss calibration of a model that is furnished with 

3,526 parameters – many more than can be endowed with unique values. This is an essential 

decision-support modelling strategy. For the study reported herein, the use of many 

parameters allows the inversion process to introduce heterogeneity to any location within the 

model domain that it deems necessary as it fits model-calculated drawdowns and recoveries 

to those measured during 6 pumping tests. Field data can thus speak freely; freedom of data 

expression can be achieved only with a superfluity of parameters. 

However, in order to avoid parametric chaos, parameter uniqueness must be sought according 

to a strict set of conditions that are embodied in so-called “Tikhonov constraints”. Application 

of these constraints requires that parameter heterogeneity be introduced to the model domain 

only if its existence is essential to the attainment of a required level of model-to-measurement 

fit, and only in ways that are orderly. This allows a modeller to learn from the parameter 

patterns that emerge from the inversion process, as it challenges him/her to give these 

patterns meaning. At the same time however, a modeller must be cautious about taking these 

patterns too literally. They may accurately reflect an underlying reality where data are plentiful, 

but are only indicative of reality where data are scarce.  

2.3.3 Implementation 

In the study documented herein, history-matching was undertaken using PEST_HP (Doherty, 

2020). PEST_HP improves parameters by adjusting them according to the following equation. 

 δk = (JtQJ + µ2ktC-1(k)k + λI)-1JtQr      (2.1) 

In equation 2.1, all bold variables that employ lower case letters are vectors; a vector is a 

column of numbers. Capitalised bold variables are matrices; matrices are arrays of numbers. 

The “t” superscript denotes the transpose of a matrix or vector; this flips it on its side. The “-1” 

superscript denotes the inverse of a matrix. Evaluation of the inverse of a large matrix can be 

a numerically intensive procedure. 
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In equation 2.1: 

δk  characterises adjustments that are made to parameters; 

r  (for “residuals”) denotes current model-to-measurement misfit; 

Q is a diagonal matrix of observation weights; 

C(k) is a user-supplied prior parameter covariance matrix whose purpose is to 

guarantee spatial orderliness of estimated parameters; 

J is the Jacobian matrix; 

µ2 and λ  are scalar coefficients that are determined by PEST_HP; λ is the so-called 

“Marquardt lambda”. 

A modeller provides PEST_HP with an initial set of parameter values. PEST_HP then 

improves them. It then improves them again, and again, until it can improve them no more. 

Each iteration of this process gives numerical voice to equation 2.1, drawing on assistance 

provided by powerful numerical tools such as singular value decomposition to prevent 

numerical instability – another cause of potential parameter chaos. During each iteration of 

the inversion process, many different parameter upgrades are calculated and tested; these 

are calculated using different values of the Marquardt lambda. The parameter set which attains 

the best fit with the calibration dataset is adopted as the starting point for the next iteration. 

The most time-consuming part of the inversion process is the filling of the J matrix. A new J 

matrix is required for every iteration. Each column of J contains the partial derivatives (i.e. 

sensitivities) of all model outputs used in the inversion process to a single parameter. 

Sensitivities comprising the elements of J can be calculated by varying each parameter 

incrementally, running the model, and then dividing alterations to model outputs by parameter 

increments. Where a model employs 3,526 parameters (as does the model described herein), 

this requires 3,526 model runs (or twice this number for a more accurate finite difference 

approximation to true derivatives). 

In the worked example described herein, two strategies were implemented to reduce the 

numerical burden of repeated model runs. The first was to simplify the model until it was no 

more complex than it needed to be. Model design is discussed in the next chapter. The second 

strategy was implementation of “randomised Jacobian” functionality accessible through 

PEST_HP. (Similar functionality is available through PESTPP-IES.) 

Instead of running the model 3,526 times during each iteration of the inversion process in 

order to fill the Jacobian matrix, PEST_HP ran the model 600 times during early iterations and 

1,000 times during later iterations. Instead of incrementing only a single parameter during 

each model run, PEST_HP incremented all parameters in a random fashion. Using model 

outputs computed from random parameter increments, it then computed an approximation to 

the Jacobian matrix. This approximation was good enough for use in equation 2.1; 

furthermore, PEST_HP’s implementation of this process ensures that the integrity of the 

randomised Jacobian matrix as an approximation to the true Jacobian matrix improves as the 

inversion process progresses. 

For those interested, some aspects of the randomised Jacobian process implemented by 

PEST_HP are listed in Table 2.1. Refer to the PEST_HP manual for more details. 
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Feature Explanation 

Jacobian 
retainment 

The Jacobian matrix used in each iteration of the inversion process retains part 
of that calculated during the previous iteration. Rank-deficiency of the Jacobian 
matrix is therefore reduced as the inversion process progresses. 

Autolocalisation Model-output-to-parameter sensitivities are reduced or zeroed if they are below a 
certain threshold; this protects them from being assigned spurious non-zero 
values. 

Broyden update During each iteration of the inversion process, a suite of Marquardt lambdas is 
used to calculate potential parameter updates. Model outputs calculated using 
these potential updates are used to improve the Jacobian matrix. The lambda-
based parameter update calculation process is then repeated. 

Mode of SVD The PEST SVDMODE variable is set to 2. Singular value decomposition is 
therefore conducted on Q½J instead of JtQJ. Under these circumstances, the 
Marquardt lambda flattens the singular value spectrum. This results in improved 
parameter updates where the filling of J is based on random parameter 
increments. 

Approximate 
regularisation 

The PEST REG2MEASRAT variable is set to 0.1. This speeds up calculation of 
µ2 in equation 2.1. It also makes the inversion process more immune to 
imperfections in J arising from the use of random parameter increments. 

Table 2.1 Some details of the PEST_HP randomised Jacobian process. 

2.4 Appropriate Model Complexity 
The geological complexity of the OB31 site has already been mentioned. More details are 

provided in the following chapter of this report.  

The model that was originally used to interpret CRT data was designed to serve two primary  

purposes. These were:  

1. assessment of pit dewatering requirements; and 

2. assessment of the impact of dewatering-induced drawdown on all possible receptors.  

The need to serve these two purposes added to the size and complexity of the model. Its 

complexity was compounded by the perceived need to provide a “faithful representation” of 

near-pit hydrogeology. 

The original model’s inability to match drawdowns and recoveries induced by 6 pumping tests 

demonstrated that its representation of near-pit hydrogeology was anything but faithful. The 

complexities of local geology, the complex relationships that link geology to hydraulic 

properties, and the discretised nature of a numerical model grid suggest that detailed 

replication of local hydrogeology may not possible. Nor, indeed, may it be necessary. If this is 

the case, then the conceptual model on which a groundwater model rests should embody this 

concept. 

As is described below, in order to extract as much information as possible from the CRT 

dataset, the OB31 model was rebuilt. In particular: 

1. A new model grid was constructed using the ALGOMESH grid generation package. 

This allowed economy of model cells while enabling grid refinement near pumping 

wells. 

2. The domain of the model was reduced to an area that includes all pumping and 

observation wells as well as geological units to which drawdowns incurred by up to 

11 days of pumping may extend. This area included the OB31 pit. 

3. The number of model layers was reduced from 7 to 1. 
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The modelling process was thus focussed unequivocally on data interpretation. Meanwhile, 

the new model’s run time was roughly 1 second. Model stability was irreproachable. The 

inversion process faced no numerical challenges. 

It may be argued that use of a single layer invalidates the simulation process, for it fails to 

acknowledge that geological layers dip steeply, and that groundwater flow may have a vertical 

component. White et al (2014) and Doherty (2015) point out that inappropriate model 

simplification may have the following undesirable consequences. 

1. It may prevent a good fit from being attained between model outputs and members of 

a calibration dataset. 

2. Model parameters may adopt roles that compensate for model imperfections as they 

are adjusted to fit a calibration dataset; this may bias some model predictions. 

3. The uncertainties of some decision-pertinent model predictions may be under-stated. 

As will be seen, the first of the above consequences is of only minor concern in the present 

study. The second of the above consequences may be of some concern. However, its effect 

on predictions of mine dewatering requirements is at least partially mitigated by the similarity 

of these predictions to observations comprising the calibration dataset. Under these 

circumstances, the above authors show that predictive bias is actually “calibrated out”.  

The third of the above consequences may indeed be relevant to the present study. However 

it should be considered in context. The addition of even a single extra layer to the revised 

OB31 model that is described in the following chapter of this report would more than double 

its parameter requirements. While this would not increase the burden of randomised Jacobian 

matrix construction, it would add greatly to parameter nonuniqueness. This may (or may not) 

increase the uncertainties ascribed to predictions of pit inflow. Linear analysis described in 

Chapter 4 reveals that the CRT calibration dataset is rich in information; at the same time, the 

simplified OB31 model leaves parameters with plenty of “room to move” to express deficits in 

this information. This suggests that uncertainties ascribed to predictions of pit dewatering 

requirements would not increase greatly if the number of model layers were doubled, and the 

number of model parameters were thereby more-than-doubled. The same applies if the 

number of model layers is trebled or quadrupled. 

We close this subsection by noting that simplicity of model design has benefits that extend 

beyond those of numerical utility.  

In the inversion process that is described in Chapter 4 of this report, the simplest parametric 

explanation for drawdowns and recoveries induced by pumping in 6 wells is sought. As was 

discussed above, some aspects of the emergent patterns of hydraulic property heterogeneity 

should not be taken too literally, while others should. However, all of them are important. All 

of them are informative. All of them are indicative of some aspect of the groundwater system 

that influences flow of water in and around the planned OB31 pit as it responds to pumping. 

Their representation as two-dimensional patterns that can be readily superimposed on 

mapped geology maximises the extent to which a modeller and his/her associates can 

understand what the CRT dataset has revealed. The didactic outcomes of the data 

assimilation process may have suffered if these patterns were spread over many model layers 

in uncertain and arbitrary ways. 
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3. OREBODY 31  
Some text in this chapter is paraphrased from internal BHP reports. Some figures are also 

extracted from BHP reports. This source of information is gratefully acknowledged.  

3.1 Background 

3.1.1 General 

The Orebody 31 (OB31) iron ore deposit is located approximately 40 km east of Newman 

Township in the Pilbara region of Western Australia. The deposit is situated to the east of 

BHP’s existing OB17/18 mine, and approximately 7 km north of the Wheelarra Hill/South 

Jimblebar deposits. See Figure 3.1. 

Mining of OB31 commenced in 2016. As approximately 70% of its iron ore reserve lies below 

the water table, significant dewatering is required to enable pit development. 

 

Figure 3.1 Location map (extracted from a BHP internal report). 

3.1.2 Climate 

The mean annual rainfall in the area which is the focus of the present study is about 300 mm. 

Most of this rain falls between December and March. The Pilbara is characterised by high 

evaporation rates (about 3100 mm/yr) and a generally low soil infiltration capacity. 

Groundwater recharge occurs during major rainfall events. Within the study area, this is 

thought to occur primarily through leakage from streambeds (McFarlane et al, 2015).  

3.1.3 Topography 

The OB31 mine is located adjacent to Jimblebar Creek in the upper portion of the Fortescue 

River catchment which drains into the Fortescue Marsh around 80 km north of OB31. Figure 

3.2 summarises the local surface water drainage and topography.  
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Figure 3.2. Topography and surface water drainage. (Extracted from a BHP internal report.) 

Both OB17/18 and OB31 form part of the east-west trending Shovelanna Hill ridgeline, which 

forms the eastern extremity of the Ophthalmia Range. To the immediate south of OB31 runs 

an east-west trending valley drained by “OB31 Creek”. This creek has generally developed 

along the strike of the Wittenoom Formation (see below), which has been eroded and 

subsequently infilled with Tertiary-aged sediments and more recent valley alluvium. A small 

sub-catchment area of roughly 85 km² supports OB31 Creek which merges with the much 

larger Jimblebar Creek at a confluence approximately 4 km to the east of OB31. OB31 and 

Jimblebar Creeks are ephemeral; their channels are mostly dry. 

The land surface elevation in the vicinity of the OB31 mine is about 540 m. 

3.2 Geology and Hydrogeology 

3.2.1 Geology 

Outcrop geology in the vicinity of OB31 is dominated by rocks of the Hamersley Group and to 

a lesser extent the upper Fortescue Group. These unconformably overlie Archean granite and 

greenstone of the Pilbara Craton. The Hamersley Basin comprises a sequence of weakly 

metamorphosed sedimentary and volcanic rocks that have been subjected to a complex 

tectonic history, this resulting in predominantly ESE-WNW striking regional synclines and 

anticlines. The large-scale structure at OB31 comprises an open, east-west striking anticline-

syncline pair with southerly dipping axial-planes which host the iron ore deposit. The anticline 

is situated south of the syncline, with the common limb dipping about 35% to the north. 

Orebody 31 is an elongate east-west deposit that extends about 4.8 km along strike and is 

about 1 km wide.  
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The OB31 pit intersects the following stratigraphic units: Brockman Iron Formation (the 

orebody), Mt Sylvia and Mt McRae Formations (footwall along the southern pit margin), and 

the Yandicoogina Member and Weeli Wolli Formation (hanging wall along the northern pit 

margin). A conceptual geological cross-section is provided in Figure 3.3. 

 

 

Figure 3.3 Conceptual geological cross section through the OB31 pit. (Extracted from a BHP 

internal report.) 

The region is cross-cut by a series of NE-SW trending fault systems, while a series of much 

smaller NW-SE trending local fault structures occurs closer to the pit.  

3.2.2 Hydrogeology 

Within the OB31 mine footprint, the Brockman Iron Formation is subdivided into the Dales 

George, Whaleback Shale and Joffre Members. The Dales Gorge and Joffre Members are 

highly permeable, while the Whaleback Shale which separates them is not. In contrast, 

banded iron and shale formations to the north and south of the Brockman Iron Formation are 

of low permeability. However high airlift yields have been recorded in bores targeting the Mt 

McRae formation; these are thought to be related to zones of faulting. 

To the south of the  OB31 orebody lies the steeply dipping Wittenoon formation. This formation 

includes weathered and karstic dolomite comprising the Paraburdoo Member. The east-west 

trending valley which overlies this dolomite is filled with Tertiary sediments that are up to 150 

m thick. These sediments, and the dolomite which underlies them, are thought to possess 

high permeability. The Paraburdoo member is, in fact, a significant regional aquifer.  
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The hydraulic gradient is eastwards across the OB31 deposit. Groundwater elevations range 

from 498 m at its west to 496 m at its east. Regional groundwater measurements indicate a 

50 m hydraulic “step” between OB31 and the Weeli Wolli Formation/Woongarra Volcanics to 

the north. 

Rainfall recharge to outcropping/subcropping orebody aquifers is relatively rapid, and 

anticipated to vary between 1% and 2% of mean annual rainfall. Minor groundwater 

throughflow from the OB31 Creek valley may also contribute to local recharge.  

3.3 Investigations 
We describe only two investigations in this report. The first of these is the focus of data 

assimilation that is described in the next chapter.  

3.3.1 Constant Rate Test (CRT) 

A series of constant rate pumping tests was carried out in late 2014. Collectively, these are 

referred to as “the CRT” in this and other reports. Water was extracted at rates of between 50 

L/s and 100 L/s from 6 production bores over periods of between 5 and 11 days (with only one 

production bore operating at any one time). Drawdown and recovery were monitored in up to 

21 wells (including some of the production wells). Data were acquired over a period of 183 

days. Note that drawdowns were not measured in all observation wells during all pumping 

periods. 

The locations of pumping and observation wells are shown in Figure 3.4a and b. Pumping 

wells are labelled in Figure 3.4a while observation wells are labelled in Figure 3.4b. 

 

Figure 3.4a. Pumping wells (red) and observation wells (blue) comprising the CRT. Observation 

wells are labelled. 
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Figure 3.4b. Pumping wells (red) and observation wells (blue) comprising the CRT. Pumping 

wells are labelled. 

Shortly after completion of the CRT, it was reported that a qualitative examination of 

drawdowns and responses indicates that pumping-induced groundwater flow is anything but 

radial, and that transmissivity in the area is anything but homogeneous. It was stated that 

some drawdown/recovery responses to pumping suggest the presence of nearby impervious 

boundaries, while others illustrate rapid propagation of drawdown over comparatively large 

distances followed by rapid recovery. The possibility of a hydraulic connection between the 

OB31 orebody and the regional Paraburdoo Member dolomite aquifer to its south was 

suggested. 

3.3.2 Hydrodynamic Trial (HDT) 

During the latter part of 2015, three production bores situated within the Dales Gorge and 

Joffre Units were simultaneously pumped at rates of up to 60 L/s for a period of about 3 

months. Drawdown, followed by one month of recovery, was monitored in 26 observation 

wells. Interpretation of these data (particularly recoveries) strongly suggested a hydraulic 

connection between Brockman orebodies and a significant source of water, probably the 

Paraburdoo Member dolomite. The existence of such a connection increases estimates of 

pumping rates required for dewatering of the OB31 pit. 

3.4 Previous Modelling 

3.4.1 The Regional Model 

In 2014 (before undertaking the CRT), BHP commissioned the development of a groundwater 

model to support development and approval of OB31 mining. The model was tasked with 
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predicting OB31 pit dewatering requirements, and predicting the impact of this dewatering on 

local and regional receptors. The domain of this model (henceforth referred to as “the regional 

model”) is shown in Figure 3.5. 
 

 

Figure 3.5. The domains of the three models that are discussed in this report, namely the 

regional  model, the intermediate model and the local model.  

The regional model employed MODFLOW SURFACT 3.0 (Panday et al, 2007) as its simulator. 

Its domain covered an area of 19.8 km × 48 km using 291 rows × 671 columns. Its 7 layers 

extended to a depth of 330 m. It employed 1,366,827 active model cells; these cells had 

dimensions of 50 m × 50 m in the vicinity of the OB31 mine. Note that MODFLOW SURFACT 

employs a structured grid. 

The regional model superseded a previous model. Considerable care was taken in 

construction of the regional model to faithfully represent the prevailing geological model.  

Parameterisation of the regional model was based on zones of piecewise constancy. Zonation 

reflected the disposition of geological units as far as these were known. Extra zones were 

added within orebody formations to reflect different intensities of mineralisation; there is 

evidence that higher grades of mineralisation sustain higher permeabilities. To assist the 

model calibration process, a small number of structural features that transect bedding planes 

were added to the model. However:  

• The locations and dispositions of these structural features were not exactly known.  

• Model grid discretisation allows only approximate representation of these and other 

geological entities. 
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The regional model was calibrated against pre-development water levels, as well as transient 

responses to pumping from boreholes in the vicinity of the OB18 mine. Upon completion of 

the CRT, parameters of this model underwent further adjustment in order for the model to fit 

drawdowns and recoveries emerging from these tests. Although the fit with CRT data was 

deemed to be “good” at the time, many nuances of CRT drawdown and recovery time series 

were not replicated by the re-calibrated model. Those charged with its re-calibration reported 

that a combination of the model’s coarse grid and short CRT pumping durations made the 

attainment of a better fit impossible. 

The calibrated regional model was used to predict dewatering requirements for the OB31 

mine. Maximum extraction rates of about 25 Ml/day were predicted.  

Once HDT data became available, the regional model underwent further re-calibration; at the 

same time, the disposition of geological units (and hence model zonation) was also revised to 

reflect revisions of the geological model. Following parameter adjustment, model fits with HDT 

drawdowns and recoveries were decreed to be reasonable. Care was taken to respect those 

aspects of drawdown and recovery time series that suggested a connection between the 

orebody and the regional dolomite aquifer. This required addition to the model of zones 

representing structural features that may connect the Brockman Iron Formation to the 

Paraburdoo Member. Predictions of OB31 dewatering rates made with the re-calibrated 

regional model rose accordingly. Rudimentary post-calibration uncertainty analysis suggested 

that dewatering requirements may be as high as 50 Ml/day, though would probably be less 

than this. 

3.4.2 The Intermediate Model 

Following considerable investments in aquifer testing, and in modelling to interpret testing-

acquired datasets, by the end of 2015 a sense was emerging that groundwater modelling was 

not serving the BHP decision-making process as well as it should be. Concerns included the 

following. 

• It was accepted that hydrogeological complexity imbues mine dewatering rate 

predictions with considerable uncertainty. Nevertheless, while early predictions of 

dewatering requirements were low, uncertainty intervals did not include what were 

later accepted as more likely estimates of these requirements. 

• While modelling that had been undertaken up until that time was able to replicate 

some aspects of CRT and HDT drawdowns and recoveries, fits with informative 

nuances of these time series were not particularly good. As long as fits between 

model outcomes and CRT/HDT drawdowns/recoveries remained indifferent, the 

capacity of model-based history-matching to reduce the uncertainties of decision-

critical predictions remained untapped. 

To investigate these issues, BHP commissioned further modelling work in late 2016. Modellers 

were tasked with improving fits between model outputs and CRT/HDT drawdowns and 

recoveries, and with quantifying the range of uncertainties associated with key model 

predictions following attainment of these fits.  

As these tasks required the use of model-partner software, it was necessary that model run 

times be reduced from that of the regional model. Hence the size of the model domain was 

reduced to 28.8 km × 10.5 km, and the number of active model cells was reduced to 288,834. 

The minimum cell size was still 50 m × 50 m. MODFLOW-SURFACT was replaced by 

MODFLOW-USG (Panday et al, 2013). The resulting model is referred to herein as “the 

intermediate model”. 
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The intermediate model retained the same 7 layers as the regional model. Initially, 

parameterisation continued to be zone-based, with zonal dispositions aligned with known or 

inferred geological boundaries and/or with known or inferred structural features. The domain 

of this model is depicted in Figure 3.5, along with those of the other models that are discussed 

herein. Figure 3.6 shows zonation in layer two of the intermediate model domain. This zonation 

echoes geological units that are featured in the geological model. Additionally, a number of 

steeply dipping, narrow zones transect the model domain in NE-SW and NW-SE directions; 

these represent possible structural features. 

 

Figure 3.6. Zonation in layer two of the intermediate model. The locations of CRT pumping and 

observation wells are also shown.  

Despite the use of a variety of software-based history-matching methodologies, fits between 

model outputs and CRT data were only slightly better than those that had been previously 

attained. Fits with HDT data were somewhat improved, but were still not convincing. It was 

established however, that the removal of structural zones prevented the attainment of even a 

mediocre fit with HDT data, especially HDT recessions. It was therefore concluded that 

hydraulic linkage of the OB31 orebody with the regional dolomite aquifer was highly likely; pit 

dewatering rates were therefore likely to be high. 

Calibration-constrained uncertainty analysis was also attempted by adjusted zone-based 

parameters. Recognising that the model was under-parameterised, 300 pilot points were 

added to the intermediate model in the vicinity of HDT pumping and observation wells. The 

parameters associated with these points acted as multipliers on existing zone-based 

parameterisation. Unfortunately, model-to-measurement fit underwent little improvement. 

Pumping rates required for pit-dewatering were estimated to lie between 25 Ml/yr and 50 Ml/yr 

(a prediction which turned out to be quite reasonable). 
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4. THE LOCAL MODEL 

4.1 Modelling Philosophy 
A defining feature of modelling that was undertaken prior to the present study was its reliance 

on real or imagined geological entities as a basis for its parameterisation. This has a number 

of undesirable consequences. They include the following.  

• The three-dimensional disposition of formation boundaries can be accurately 

characterised at some locations within the model domain, but not at others. 

• The three-dimensional dispositions of structural entities that may enhance or inhibit 

cross-formational flow of water are only vaguely known. 

• The mapping of complex geological units onto a relatively coarse, three-dimensional 

model grid can only be approximate. 

• The hydraulic properties of geological entities are unlikely to be uniform; to the extent 

that they exhibit spatial variation, boundaries are unlikely to be sharp. 

• Relationships between hydraulic properties and mappable properties such as 

mineralisation intensity are poorly known. 

• The desire to represent geological “reality” in three dimensions promulgates long 

model run times; this makes history-matching and calibration-constrained uncertainty 

analysis difficult. 

Because of all of these factors, attempts at history-matching that are described in the previous 

chapters of this report led to indifferent fits with datasets that may have been informative of 

important sources of stored water, and of important connections between these sources and 

the Brockman orebody. 

In late 2020 a more data-focussed approach to OB31 modelling was attempted. The 

philosophy underlying this approach was “fit first and explain later”. Its purpose was to remove 

all encumbrances to flow of information from pumping-derived data to model parameters. 

Only the CRT dataset was fit. This was done in order to ascertain whether this dataset, if 

subjected to state-of-the-art, model-based interpretation, provides evidence of an orebody-to-

regional-aquifer hydraulic connection, or of other hydraulic connections which may influence 

pit dewatering requirements  

4.2 Model Re-Design 

4.2.1 Model Grid 

The model described in the present chapter is referred to as “the local model”. It employs the 

MODFLOW-USG simulator. Its domain is shown in Figure 3.5. A closer view of its grid is 

provided by Figure 4.1. This figure also shows the locations of CRT pumping and observation 

wells. 
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Figure 4.1. Domain and grid of the local model. CRT pumping wells (red) and observation wells 

(blue) are also shown. 

The northern and southern boundaries of the local model domain follow geological strike. The 

northern boundary coincides with the outcrop of the low permeability Woongarra Volcanics. 

The southern part of the model domain includes the Paraburdoo Member of the Wittenoon 

Formation – the regional dolomite aquifer. 

The model contains only a single layer. This hastens its execution and renders the model 

immune to numerical instability. It also respects the notion that features which impede or 

facilitate flow of water to the OB31 pit do so because they affect horizontal, rather than vertical, 

movement of water. If information on these features is, in fact, resident in the CRT dataset, 

opportunities for its emergence are therefore heightened.  

The single model layer is designated as “unconfined”; hence transmissivity can vary with water 

level. However transmissivity variations are minor during the CRT as the elevation of the base 

of the single layer is set to 300 m, this being about 180 m below the water table. This depth is 

somewhat arbitrary. Hence, when inspecting calibration outcomes that are presented below, 

the reader should bear in mind that even though parameters bear the name “hydraulic 

conductivity” (for this is what the model requires), it is effectively transmissivities that are 

estimated.  

The local model grid was generated using the ALGOMESH package developed by 

HydroAlgorithmics. Cells which contain pumping wells have an area of 4 m2. Cell areas 

increase in size with distance from pumping wells up to about 2500 m2. 

The northern and southern boundaries of the local model are of the “no-flow” type. Water can 

enter and leave the model domain only along the direction of geological strike through its 
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eastern and western boundaries. These boundaries are of the “general head” (i.e. GHB) type. 

Heads along these boundaries are set at 486 m. (The small west-to-east pre-development 

head gradient is ignored, as interpretation of the CRT dataset is based only on pumping-

induced drawdowns and recoveries, and not on heads.) The conductance assigned to each 

GHB instance is calculated automatically using the hydraulic conductivity of the cell to which 

it is assigned; it represents material lying between the cell centre and the lateral cell boundary. 

The model receives no recharge. As is stated above, modelling is dedicated to inference of 

hydraulic properties from CRT-induced drawdowns and recoveries. Recharge-induced water 

level variations during the 6 month period over which the CRT was conducted are minor. 

4.2.2 Timing 

When configured for interpretation of CRT data, the model runs over 15 stress periods. The 

first of these stress periods is steady state. Six of the other stress periods represent times over 

which a single extraction well is operating. The other stress periods simulate recovery. The 

maximum stress period length is 30 days. The minimum stress period length is 5 days. 

Under these conditions, the local model takes approximately 1 second to run on a computer 

that uses an I9-9900KF CPU running at 3.6 Ghz. 

4.3 Parameterisation 
Pilot points are employed for parameterisation of hydraulic conductivity and specific yield. 

Parameterisation of each of these properties relies on the same set of pilot points – 1,763 in 

each case. Their locations are shown in Figure 4.2.  

 

Figure 4.2. Pilot points used for parameterisation of hydraulic conductivity and specific yield. 
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The operation of pilot points is described in other GMDSI reports and in documentation of 

PEST utility support software, particularly the PLPROC model preprocessor; see Doherty 

(2020a). When using pilot points as a parameterisation device for a particular hydraulic 

property, assignment of hydraulic property values to cells of a model domain becomes a two-

step process. First values are assigned to pilot points. Then these values are spatially 

interpolated to the centres of model grid cells. For the local OB31 model described herein, 

spatial interpolation is undertaken using kriging. The variogram on which kriging is based is 

spatially variable; its range is calculated automatically by PLPROC as about 3 times the local 

inter-pilot-point spacing.  

Emplacement of the pilot points depicted in Figure 4.2 was manual. As is apparent from this 

figure, pilot point spatial density is high in the vicinity of pumping and observation wells, and 

is lower at greater distances from these wells. This strategy of pilot point emplacement allows 

the calibration process to introduce appropriate patterns of local hydraulic property 

heterogeneity to the model domain where observations of drawdown and recovery require 

this. Meanwhile, the use of lower pilot point densities in observation-poor parts of the model 

domain maintains parameters at a reasonable number. This facilitates post-calibration linear 

analysis. 

4.4 History-Matching 

4.4.1 Software and Methodology 

History-matching was undertaken using PEST_HP (Doherty, 2020b). The numerical burden 

of Jacobian matrix calculation was significantly reduced by basing its construction on random 

parameter increments; see Section 2.3 of this document for further details. Despite the fact 

that the inversion process features 3,526 parameters, the number of model runs required per 

iteration of that process was only 600 for initial iterations, and 1,000 for later iterations. A 

further 100 model runs per iteration were devoted to parameter upgrade testing and to 

implementing Broyden improvement of the Jacobian matrix.  

The inversion process was allowed to proceed for 27 iterations. However a more-than-

satisfactory fit with the calibration dataset was achieved after only 10 iterations at a numerical 

cost of about 10,000 model runs. 

A number of strategies were employed to optimise extraction of information from the CRT 

dataset through the process of model calibration. Two of these strategies are now briefly 

described. 

4.4.2 Objective Function Definition 

Model-to-measurement misfit is measured using an objective function. This is defined as the 

sum of weighted squared differences between model outcomes and corresponding field 

measurements. The lower is the objective function, the better is the fit. 

Strategic design of an objective function can ensure that appropriate nuances of system 

behaviour are replicated by the calibrated model, while aspects of system behaviour which 

are of secondary importance are ignored if they cannot be easily replicated. This can improve 

the performance of inversion software in minimizing the objective function, at the same time 

as it can reduce parameter and predictive bias. See Doherty and Welter (2010) and White et 

al (2014) for details. 

Two major components comprise the objective function that was minimised by PEST_HP. The 

first of these components represents pumping-induced drawdown (including post pumping 

recovery from drawdown). For any observation well, the drawdown at any time is calculated 

by subtracting the head measured at that time from the first head that was measured in the 
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well. The time of this measurement varies from well to well. Model-calculated counterparts of 

measured heads are subjected to the same process before being compared with respective 

field observations. 

During the 183 day period over which CRT data were gathered, heads in some observation 

wells underwent a small drift. In order to grant the inversion process some immunity from 

observation drift, temporal differences between subsequent drawdown measurements and 

their model-calculated counterparts are also matched. These temporal drawdown differences 

comprise the second major component of the objective function.  

Special consideration is given to drawdown measurements that were made in pumped wells. 

A model-to-measurement penalty is incurred (i.e. the objective function is increased) only if 

model-calculated drawdowns (and temporal drawdown differences) exceed those that were 

actually measured. This strategy accommodates the fact that model cells which contain 

pumping wells have an area of 4 m2; this is far greater than the cross-sectional area of a 

pumping well. 

4.4.3 Initial Parameter Values 

As was explained in Section 2.3 of this document, history-matching is an iterative process. A 

modeller specifies an initial set of parameter values. PEST_HP improves these values. In 

doing so, it alters them by the minimum amount that is required for model outputs to match 

their field-measured counterparts. Minimisation of parameter adjustment is implemented 

through Tikhonov regularisation. This procedure is intended to nurture reasonableness of 

estimated parameter values. Ultimately, however, it is the modeller who must decide whether 

estimated parameter values are, in fact, reasonable. 

When assigning initial values to parameters in different parts of a model domain, it is common 

practice for a modeller to follow hydrogeological advice, as this can encourage the estimation 

of final parameter values whose minimum error variance status is underscored by 

hydrogeological respectability. This strategy was not adopted in calibration of the local OB31 

model. Instead hydraulic conductivity and specific yield parameters were assigned spatially 

uniform initial values of 1 m/day and 10-3 respectively. This strategy was adopted for the 

following reasons.  

• The somewhat arbitrary depth assigned to the base of the single model layer renders 

initial and estimated values of hydraulic conductivity somewhat arbitrary. 

• Previous attempts to fit the CRT calibration dataset provided no cause for optimism 

that estimates of hydraulic properties based on mapped and inferred geology are 

good indicators of actual hydraulic properties. 

• Unmapped structural features are likely to exert a significant influence on 

groundwater flow in the vicinity of the OB31 pit. Spatial uniformity of parameter 

values imposes no preconditions on estimated parameter values. The inversion 

process is therefore granted freedom to introduce heterogeneity to the model domain 

where it has most effect. This is in accordance with the “fit first and explain later” 

philosophy that guided calibration of the OB31 model. 

• The CRT calibration dataset includes incidences of observation wells that incur 

significant drawdowns from pumping in distant wells, and of observations wells that 

are minimally impacted by nearby pumping. The need for the inversion process to 

introduce parameter patterns that include significant, and possibly narrow, connected 

hydraulic conductivity is clear. However it will be unable to achieve this unless initial 

hydraulic property values ensure sensitivities of drawdowns in all observation wells to 

extraction from all pumping wells. This requires that the initial hydraulic conductivity 

be high and that the initial specific yield be low. 
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4.5 Outcomes of History Matching 

4.5.1 Drawdowns  

Measured and model-calculated drawdowns for all observation wells are graphed in the 

Appendix. As stated above, the drawdown assigned to each well is obtained by subtracting its 

measured head from the first measured head in the well-specific time series. Hence the first 

drawdown plotted for each well is zero. For reference, water extraction rates from production 

bores are also plotted. 

In these figures, measured drawdowns are represented as dots joined by straight lines. It is 

not implied that these straight lines provide a mechanism for temporal interpolation between 

measurements. However, in some of the figures, they make drawdown trends a little more 

apparent.  

As is described in the previous subsection, the objective function that characterises model-to-

measurement misfit is formulated in a way that encourages the inversion process to fit short-

term drawdown variations and amplitudes that embody the response of an individual 

observation well to an individual pumping well, even if it cannot fit drawdowns in a specific well 

exactly over the entire 183 day duration of the CRT. This should be born in mind when 

inspecting the figures that are provided in the Appendix. A fit is “good” if the pattern and 

amplitude of a modelled drawdown response to pumping from a certain production well 

matches those of the observed drawdown response to pumping from the same production 

well, even if the two drawdown curves are not superimposed on each other. 

A number of measurements were made in pumping wells. In general, recovery measurements 

were made in these wells, while drawdown measurements were not. Recall that the inversion 

process does not require that modelled drawdowns and recoveries for these wells replicate 

measured drawdowns and recoveries, only that the former are smaller in amplitude than the 

latter. 

In general, fits between modelled and measured drawdowns and recoveries are extremely 

good – better by far than fits attained through any previous attempt at fitting CRT data. The 

only disappointing aspect of graphs presented in the Appendix is that model-calculated 

drawdowns in wells HEB0014 and HEB0029 incurred by pumping from well HEB0034 are 

smaller than those which were actually observed. Both of these observation wells are relatively 

distant from HEB0034; they are both disposed in a roughly ESE direction from it. The 

amplitudes of their drawdown responses, taken in combination with more limited drawdown 

responses in other wells to this same and other pumping, suggests the existence of a narrow 

band of high conductivity material whose geometry is difficult to represent using pilot points. 

Alternatively, these drawdown anomalies may be outcomes of three-dimensional flow that 

cannot be represented using the current model. The former explanation is thought to be more 

plausible as the inversion process did, indeed, attempt to introduce a narrow band of high 

permeability material that connects the above pumping and observation wells. 

4.5.2 Parameter Fields 

The inferred distribution of the log of hydraulic conductivity is shown in Figure 4.3. The inferred 

distribution of the log of specific yield is depicted in Figure 4.4. In part b of both of these figures, 

this distribution is overlain on satellite imagery of the study area. In part c of each of these 

figures, the inferred hydraulic property distribution is overlain on a map in which layer 2 cells 

of the regional model are coloured according to rock type. Part b of both of these figures 

feature polylinear structural features whose existence and locations have been inferred with 

varying degrees of certainty from geological data. Little about these features is known, 
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including any effects that they may have on movement of groundwater. It is not impossible 

that other unmapped, but more hydraulically relevant, features exist in this area. 

 

 

 

 

Figure 4.3a. Inversion-inferred hydraulic conductivity (m/day). 

 

 

Figure 4.3b. Inversion-inferred hydraulic conductivity overlain on a satellite image. 
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Figure 4.3c. Inversion-inferred hydraulic conductivity overlain on layer 2 zonation of the regional 

model. Zone colours are arbitrary; zones reflect the geological model of the time. 

 

 

 

 

 

Figure 4.4a. Inversion-inferred specific yield. 
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Figure 4.4a. Inversion-inferred specific yield overlain on a satellite image. 

 

Figure 4.4c. Inversion-inferred specific yield overlain on layer 2 zonation of the regional model. 

Zone colours are arbitrary; zones reflect the geological model of the time. 

Care must be taken in interpreting the parameter fields that are depicted in Figures 4.3 and 

4.4. High uncertainties are often associated with inferences of subsurface hydraulic properties 

from inversion, even where a calibration dataset is relatively large. Therefore, the patterns that 

are displayed in Figures 4.3 and 4.4 cannot be construed as defining the exact dispositions of 

material of high and low hydraulic conductivity and specific yield beneath the surface. This is 

particularly the case for specific yield, for which low values may reflect confined flow in parts 

of the model domain.  

However the patterns of Figure 4.3 and 4.4 indicate that a high degree of hydraulic property 

heterogeneity is required to explain the drawdowns and recoveries that comprise the CRT 

dataset. Nevertheless, while the three-dimensional patterns that prevail in the real world may 

differ from the two dimensional patterns that are displayed in Figures 4.3 and 4.4, their 

hydraulic consequences are the same. In the vicinity of pumping and observation wells, this 

probably requires that real-world areas of anomalously low and high hydraulic conductivity 

exist in roughly the same places as depicted in Figure 4.3. In contrast, in those parts of the 
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model domain in which no pumping or observation wells exist, it is an easy matter for the 

inversion process to introduce anomalous hydraulic property values in order that drawdowns 

and responses to CRT pumping are reproduced in other parts of the model domain. 

Considerably uncertainty therefore surrounds the true dispositions of anomalous property 

values in these areas.  

Taking all of this into account, Figures 4.3 and 4.4 suggest the following. 

• There is a tendency for areas of high and low hydraulic conductivity to be aligned in 

an east-west direction in accordance with the strike of the prevailing geology. High 

conductivities within the Brockman Iron Formation, and low conductivities within 

shales of the Mount McRae and Sylvia Formations, are particularly apparent.  

• However, strike-aligned bands of high and low hydraulic conductivity are intersected 

by narrow zones of anomalously low and high hydraulic conductivity respectively. In 

some cases the strike of these intersecting features is aligned with one of the two 

directions along which structural features are thought to strike, and are situated close 

to the suggested locations of these features. 

• The inversion process makes it clear that reproduction of CRT drawdowns and 

responses requires that water be transmitted to areas where pumping wells exist 

from locations that lie beyond those where observation wells exist. The inversion 

process also forges a hydraulic connection between some of the former areas and 

the regional dolomite aquifer that occupies the southern part of the model domain. 

Moderate values of hydraulic conductivity are awarded to this aquifer. The inversion 

process also introduces high hydraulic conductivities to the north-eastern part of the 

model domain which is occupied by the Brockman Iron Formation. This gives the 

model access to water through its eastern boundary. 

• High specific yields are introduced to parts of the Brockman Iron Formation and to 

parts of the regional dolomite aquifer. This is in accordance with the known hydraulic 

properties of these two formations.  

• Other areas to which the inversion process has introduced anomalously high specific 

yields appear to be aligned with, and/or coincide with, structural features. Perhaps 

these structural features provide access to water stored within overlying Tertiary 

sediments. 

In summary, attempts to understand the patterns that characterise Figures 4.3 and 4.4 should 

not necessarily invoke the existence of bodies of anomalously high or low hydraulic properties 

at exactly the places indicated by the patterns. In some cases these patterns do indeed 

indicate anomalous hydraulic properties somewhere within the general area of inversion-

emergent anomalies; however the complex, three-dimensional disposition of prevailing 

geological units and structure must be taken into account when trying to link details of these 

patterns to known or inferred geology.  

The band of high hydraulic conductivity that the inversion process has introduced in the north 

eastern part of the model domain is perhaps the most curious in terms of location. PEST_HP 

has conveniently assigned high hydraulic conductivities to an area where observations are 

lacking in what seems like an obvious attempt to convey water to the central part of the model 

domain. Recall that conductances of general head boundaries assigned to the OB31 model 

increase in proportion to cell hydraulic conductivities; this enables the inversion process to 

access water from the boundary at the same time as it introduces the means to move it.  

There is little doubt that locally high hydraulic conductivities, and access to stored or boundary 

water, are integral to fitting CRT drawdowns and recoveries. However it is possible that the 

inversion process cannot distinguish between different locations at which these sources of 
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water may exist. This could be readily tested by repeating the inversion process with low, non-

adjustable conductances assigned to northern parts of the eastern model boundary. 

PEST_HP may then introduce an alternative source of stored or boundary water to the model 

domain, and then convey it to pumping areas through a conductive pathway. Alternatively, 

model-to-measurement fits may deteriorate; this would constitute evidence that north-eastern 

elevated hydraulic conductivities are real. 

It must be born in mind however, that the existence of sources of water, and pathways to them, 

may be more significant than their exact locations as far as predictions of pit dewatering 

requirements are concerned. Their exact locations may be of secondary importance. 

4.6 Linear Analysis 

4.6.1 General 

Following calibration of the OB31 model, linear analysis was undertaken in order to gain some 

idea of post-calibration parameter and predictive uncertainties. To maintain reader interest, 

theory is not provided herein. Those who are interested can refer to Doherty (2015) and other 

GMDSI reports. 

Linear analysis is based on the concept that the action of a model on its parameters, under 

both calibration and predictive conditions, can be represented by the action of a matrix on a 

vector. The matrix contains sensitivities of pertinent model outputs to all model parameters. 

Under calibration conditions, this matrix is the Jacobian matrix.  

Unfortunately, the approximate, randomised, Jacobian matrix which was used to great effect 

by PEST_HP to estimate parameter values, does not provide a sound basis for linear analysis. 

Hence, following model calibration, a high-fidelity Jacobian matrix was computed through 

individual incremental variation of each of the 3,526 parameters of the OB31 model. 

Sensitivities of predictions to parameters were computed in the same way.  

Post-calibration parameter and prediction uncertainties were then computed using matrix 

equations which are derived from Bayes equation. Software which carries out these tasks is 

available through the PEST and PyEMU (White et al, 2016) suites.  

4.6.2 Parameters 

Figure 4.5 maps relative parameter uncertainty reduction throughout the model domain - for 

hydraulic conductivity in Figure 4.5a, and for specific yield in Figure 4.5b. The relative 

uncertainty reduction of parameter i (i.e. ri) is defined using the equation: 

 𝑟𝑖 =  1 −
𝜎𝑖

𝑝𝑜𝑠𝑡

𝜎
𝑖
𝑝𝑟𝑖𝑜𝑟         (4.1) 

where 𝜎𝑖
𝑝𝑟𝑖𝑜𝑟

 is the prior uncertainty of parameter i (an outcome of expert knowledge and site 

characterisation) and 𝜎𝑖
𝑝𝑜𝑠𝑡

 is the posterior uncertainty of the same parameter. ri varies 

between 0.0 and 1.0. The closer is ri to 1.0, the greater is the information content of the 

calibration dataset with respect to parameter i. 
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Figure 4.5a. Relative uncertainty reduction of hydraulic conductivity gained through calibration 

of the OB31 model against the CRT dataset. 
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Figure 4.5b. Relative uncertainty reduction of specific yield gained through calibration of the 

OB31 model against the CRT dataset. 

Figure 4.5 shows that parameter uncertainty reduction generally increases with proximity of 

parameters to pumping and observation wells. However, of particular interest are the high 

levels of certainty associated with high hydraulic conductivity values ascribed to the north-

eastern corner of the model domain. The alignment of this area of high parameter certainty 

with a possible structural feature is of interest.  

Linear analysis suggests that hydraulic conductivities ascribed to the regional dolomite aquifer 

in the southern part of the model domain are also reasonably certain. 

It also appears that the inversion process seems to be relatively certain of the need to assign 

high values of specific yield to three areas within the model domain. Two of these areas lie in 

the central north and south of the model domain; a third lies in the eastern part of the model 

domain in the vicinity of a group of pumping and extraction wells. The central northern area 

coincides with the Brockman Iron Formation while the central southern area coincides with the 

regional dolomite aquifer. The eastern area may represent water stored in Tertiary sediments 

to which deeper geological layers have access through conductive structural features. 

4.6.3 A Prediction 

Though not built to simulate pit inflows or dewatering requirements, the local OB31 model was 

used to predict inflow to an artificial pit whose footprint is shown in Figure 4.6 (the footprint of 

the current pit) as it deepens at a uniform rate of 12 m per year. This provides a crude estimate 

of pit dewatering requirements. Linear analysis was then used to estimate the pre- and post-

calibration uncertainties of this prediction. The ratio of these uncertainties provides an estimate 
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of the information content of the CRT dataset with respect to predictions of pit dewatering 

requirements. 

 

Figure 4.6. MODFLOW-USG DRAIN boundary conditions were emplaced in green-coloured cells 

to simulate inflow into a deepening pit.  

Deepening of the OB31 pit was simulated using the MODFLOW-USG DRAIN package. High 

conductance DRAIN boundary conditions were introduced to the green cells of Figure 4.6. 

Model-predicted inflows for 9 years of pit deepening are shown in Figure 4.7. At the time of 

writing, the pit has been operating for 4 years. According to Figure 4.7, predicted inflows into 

the artificial pit at this time are 37.8 Ml/day.  

 

Figure 4.7. Predicted inflow to the artificial pit of Figure 4.6. 

Dewatering of the real-world pit is effected through extraction of water from a number of near-

pit production wells. Collective extraction rates from these wells have been in the vicinity of 40 

Ml/day since dewatering began. 

Prior to undertaking linear predictive uncertainty analysis, four new parameters were added to 

the model described herein. These parameters are factors applied to GHB boundary 

conductances. The inclusion of these parameters in the analysis, and the assignment of high 

prior uncertainties to them (4 orders of magnitude), partially accommodates model errors in 
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inflow predictions incurred by the proximity of boundaries to the pit. Hence while predictions 

of pit inflow made by the current model are probably over-estimated because of the proximity 

of these boundaries, linear analysis is able to take this into account when assessing the 

information content of the CRT dataset with respect to predictions of pit dewatering 

requirements.  

Using linear analysis, a post-calibration uncertainty standard deviation of 3 Ml/d can be 

associated with the 4 year pit inflow prediction described above. Meanwhile, linear analysis 

associates a prior standard deviation of about 20 Ml/d with this same prediction. It can 

therefore be concluded that the information content of the CRT dataset with respect to this 

prediction is high. 

As well as enabling approximate quantification of parameter and predictive uncertainty, linear 

analysis enables a modeller to track the flow of information from observations to parameters. 

This can be achieved by undertaking singular value decomposition of the weighted Jacobian 

matrix. In the present instance, analysis of this matrix establishes that the inversion process 

is able to extract about 200 separate “pieces of information” from the CRT calibration dataset. 

That is, it is able to estimate about 200 “super parameters”. Super parameters are actually 

combinations of user-defined parameters that comprise the receptacles into which information 

contained in the calibration dataset is placed. The inversion process defines these 

combinations of parameters, and then estimates them.  

The number of super parameters exposed through calibration of the model described herein 

is significantly less than the number of parameters (3,526) with which the model is endowed. 

This is a good thing, for the greater is the size of a model’s parameter set, the greater is the 

freedom granted to the inversion process in defining combinations of parameters that are 

optimal for estimation. These combinations are such as to minimise the potential for error (i.e. 

error variance) associated with any prediction that the model must make. Ideally, a prediction 

made by the calibrated model is therefore roughly at the centre of its posterior uncertainty 

interval. Meanwhile, model parameters in excess of super parameters are used by linear 

analysis to associate posterior uncertainties with its predictions.  

Before closing this subsection, we repeat the point made above that the model that is 

described in this report was not built to predict pit dewatering rates. Instead, it was built to 

analyse data that may be informative of hydrogeological conditions which impact pit 

dewatering rates. The above predictions of dewatering requirements made by the present 

model are invalidated by (among other things): 

1. the use of DRAIN cells to simulate an artificial pit that deepens at a uniform rate 

through a uniform footprint; 

2. the proximity of general head boundary conditions to the pit. 

The second of the above factors exerts a considerable influence on predictions of pit inflow 

made by the model described herein, for it constitutes an infinite supply of water within 

hydraulic reach of the pit. As time progresses and the pit deepens, inflow to the pit can draw 

on this source of water through connections of relatively high conductance. 

Nevertheless, notwithstanding its limitations, the making of the above prediction, and the 

application of linear uncertainty analysis to it, contributes to the present study for reasons 

which we now explain. 

Model-based interpretation of CRT data has exposed sources of stored water, and pathways 

to this water, in the vicinity of the OB31 pit. These will affect pit dewatering rates. While long 

term dewatering requirements for a real-world pit will probably be considerably less than the 

9-year inflows plotted in Figure 4.7 because general head boundary conditions which 
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constitute the eastern and western extremes of the model do not exist in the real world, it is 

nevertheless of interest to note that model predictions of inflow through the eastern boundary 

are much greater than those through the western boundary; the latter boundary is much closer 

to the pit than the former boundary. This supports the notion that near-pit extraction has the 

capacity to draw water from considerable distances. The existence, and in some cases the 

locations, of permeability pathways through which water may flow to the pit dewatering 

system have been exposed by assimilation of CRT data.  

As explained above, uncertainties in pit dewatering requirements that were evaluated using 

linear analysis do not neglect errors that are encapsulated in model boundary conditions. At 

the same time, they indicate that information resident in the CRT dataset is highly pertinent 

to predictions of pit dewatering rates. This is exposed by the high prior-to-posterior uncertainty 

ratio of inflows into the artificial pit that was the subject of the above analysis. It follows that 

any model that is focussed on making predictions of OB31 pit dewatering requirements will 

benefit from assimilation of these same data. In the case of OB31, the more extensive HDT 

dataset (see above) encompasses much of this same information. These HDT data were, 

indeed, processed in models that were used to make predictions of OB31 pit dewatering 

requirements.  
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5. DISCUSSION AND CONCLUSIONS 
The GMDSI worked example that is documented herein demonstrates a number of important 

features of decision-support modelling.  

First of all, it demonstrates that construction of a decision-support numerical model should not 

be viewed as construction of a numerical device that can accurately replicate the behaviour of 

a natural system, either in the past or in the future. Emulation of system behaviour is not its 

purpose. The purpose of decision-support modelling is to assimilate information that can 

reduce the uncertainties of decision-critical predictions. This information flows through the 

parameters with which a model is endowed to the predictions that the model must make. 

Access to much of this information is gained through history-matching. Therefore, where 

measurements of system behaviour are available, a decision-support modelling workflow must 

facilitate the history-matching process. This does not mean that it should eschew information 

born of site characterisation and expert knowledge. Instead, a decision-support modelling 

workflow should blend information from these two sources in a way that is appropriate for the 

geological and management context in which decisions are required. 

The constant rate test (CRT) conducted at Orebody 31 (OB31) comprises a rich source of 

decision-pertinent information. Linear analysis establishes an ability to estimate about 200 

super-parameters (combinations of model parameters) on the basis of this information. A 

challenge faced by the OB31 modelling process was design of a modelling strategy that could 

capture this information. 

Assimilation of information requires a fast-running, numerically-stable model. It also requires 

design of a flexible parameterisation scheme which is “up to the task” of information 

assimilation. Expert knowledge and site characterisation may suggest values for some of 

these parameters, and for relationships between them, that should be respected as long as 

they are not demonstrably incompatible with information which the inversion process reveals. 

Meanwhile, a model’s parameters must be numerous enough, and flexible enough, to adopt 

values and spatial patterns that a modeller may not have foreseen as they are adjusted in 

order for a model to replicate the measured behaviour of a system. This is especially the case 

in areas of complex geology where the factors that influence subsurface hydraulic behaviour 

are only vaguely known. In summary, a decision-support model must be designed “from the 

ground up” to assimilate all available data. 

Previous decision-support numerical modelling of the OB31 site attempted to portray the 

hydrogeological complexity of the site. However, experience gained in the construction, 

history-matching and deployment of these models suggests that the optimal response to 

hydrogeological complexity may not necessarily be numerical model complexity. Construction 

of a complex numerical model runs a high risk of cementing inadequate hydrogeological 

concepts into the modelling process. Instead, an appropriate response to hydrogeological 

complexity may be the construction of a model that can support sufficient parameterisation 

complexity to assimilate decision-pertinent information, while being simple enough to grant 

that information free expression through patterns of parameter heterogeneity that emerge from 

the history-matching process. The modeller is thereby informed of things that matter at a 

particular site. These will not be expressed as picture-perfect, three-dimensional replications 

of subsurface heterogeneity. Instead they may be expressed as minimalist patterns of 

heterogeneity that, if properly interpreted, may either confirm or challenge currently-held 

understandings of hydrogeological processes that are operative at that site. 
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The concept of “conceptual model” may therefore require some revision if it is to provide a 

more useful basis for decision-support modelling than it does now. Concepts which guide 

decision-support modelling as it is implemented at a particular study site should include more 

than an imperative to build a numerical model that echoes current hydrogeological 

understanding of that site. They should recognise that currently available data, if properly 

processed, may alter current hydrogeological understandings. In doing so, they should 

recognise that the numerical modelling process should be designed to question current 

hydrogeological concepts as much as it reflects them. This allows modellers and modelling 

stakeholders to learn as much as possible about the site through the modelling process.  

The modelling workflow that is documented in this GMDSI report demonstrates that where a 

site is hydrogeologically complex, attempts to express hydrogeological detail in a model that 

must also assimilate information-rich site data may actually diminish the decision-support 

potential of the modelling process rather than magnify it. Where a site is complex, but the 

details of that complexity are only vaguely known, the conceptual model on which a numerical 

model rests should impel the numerical modelling process to provide a canvas on which data 

can paint. The picture that emerges from assimilation of these data may be somewhat 

abstract. However this does not devalue the worth of these data. Modellers do not have the 

luxury of enjoying representational art; any “picture perfect” representation of the subsurface 

is almost certainly incorrect. 

The parameter field that emerged from calibration of the OB31 model requires hydrogeological 

interpretation – more so in some parts of the model domain than in others. It is a projection 

onto a two-dimensional modelling landscape of complex, three-dimensional, hydrogeological 

features. Linear analysis demonstrates that some aspects of these parameter patterns should 

be taken very seriously. This does not mean that they should be interpreted literally. Rather it 

means that they are indicative of sources of water, and pathways along which water can flow, 

that are real, and that may have a serious impact on OB31 pit dewatering requirements. The 

exact nature and disposition of these water sources and pathways is a matter for local 

geological expertise to address. However, for some decisions, further details may not be 

necessary; their existence alone may provide the information on which a decision can be 

based. For example, hypothetically (as the time has already passed) it may be possible to 

formulate licencing and pipeline requirements for OB31 pit dewatering based only on 

assimilation of CRT data. In contrast, the number and placement of pit dewatering wells may 

require the acquisition of further data, followed by model-based assimilation of these data.  

The history of OB31 modelling exemplifies approaches to decision-support modelling that, in 

the authors’ opinion, leave some room for improvement. The premise that sustained much of 

that modelling, and indeed sustains much of today’s decision-support groundwater modelling 

in general, is that movement of groundwater can be simulated accurately by a numerical 

model. In areas of complex geology, accurate simulation of groundwater movement requires 

representation of hydrogeological detail. However this detail cannot be known. It must 

therefore be represented stochastically. Predictive certainty is therefore not an option. The 

best that can be expected is reduction in the uncertainties of decision-critical predictions 

through data assimilation effected by history-matching.  

It is an inconvenient truth that current technology does not yet allow the information that history 

matching conveys to a model to be expressed as an extensive suite of picture-perfect, 

calibration-constrained stochastic realisations of hydrogeological detail. Furthermore, even if 

this were technically possible, a hydrogeologist may not be aware of some of the complex 

three-dimensional details that the stochastic history-matching process may need to express. 

Failure to give stochastic voice to all geological possibilities may therefore bias this process. 

This is especially the case in an area that has undergone as much tectonic deformation as 

that which is the focus of the current study.  
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An alternative decision-support strategy is to design a modelling workflow that grants the 

history-matching process the freedom that it needs to express bottom-line heterogeneity that 

is required to explain measurements of system state. If the hydraulic stresses that prevailed 

when these measurements were made resemble those to which the system will be subjected 

in the future, then history-matching undertaken in this way may be capable of expressing all 

of the hydrogeological details that matter to decision-salient model predictions. Uncertainties 

can still be quantified, and decisions can still be made. Meanwhile the modelling process has 

served the decision-support imperatives of uncertainty quantification and reduction in a way 

that is tailored to the decisions that it must support. 
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APPENDIX. MODELLED AND OBSERVED DRAWDOWNS 
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