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PREFACE  
The Groundwater Modelling Decision Support Initiative (GMDSI) is an industry-funded and 
industry-aligned project focused on improving the role that groundwater modelling plays in 
supporting environmental management and decision-making. Over the life of the project, it will 
document a number of examples of decision-support groundwater modelling. These 
documented worked examples will attempt to demonstrate that by following the scientific 
method, and by employing modern, computer-based approaches to data assimilation, the 
uncertainties associated with groundwater model predictions can be both quantified and 
reduced. With realistic confidence intervals associated with predictions of management 
interest, the risks associated with different courses of management action can be properly 
assessed before critical decisions are made.  

GMDSI worked example reports, one of which you are now reading, are deliberately different 
from other modelling reports. They do not describe all of the nuances of a particular study site. 
They do not provide every construction and deployment detail of a particular model. In fact, 
they are not written for modelling specialists at all. Instead, a GMDSI worked example report 
is written with a broader audience in mind. Its intention is to convey concepts, rather than to 
record details of model construction. In doing so, it attempts to raise its readers’ awareness of 
modelling and data-assimilation possibilities that may prove useful in their own groundwater 
management contexts.  

The decision-support challenges that are addressed by GMDSI worked examples include the 
following: 

• assessing the reliability of a public water supply;  
• protection of a groundwater resource from contamination;  
• design of a mine dewatering system; 
• assessing the environmental impacts of mining; and  
• management of aquifers threatened by salt water intrusion.  

In all cases the approach is the same. Unwanted outcomes of a management strategy are 
identified. The ways in which modelling is used to explore whether these outcomes are 
possible, given all information that is available at the time of modelling, are reported. Model 
design choices are explained in a way that modellers and non-modellers can understand.  

The authors of GMDSI worked example reports make no claim that the modelling work which 
they document cannot be improved. As all modellers know, time and resources available for 
modelling are always limited. The quality of data on which a model relies is always suspect. 
Modelling choices are always subjective, and are sometimes made differently with the benefit 
of hindsight.  

What we do claim, however, is that the modelling work which we report has attempted to 
implement the scientific method to address challenges that are typical of those encountered 
on a day-to-day basis in groundwater management worldwide. 

We thank and acknowledge our collaborators, and GMDSI project funders, for making these 
reports possible. 

 

Dr John Doherty, GMDSI Project, Flinders University and Watermark Numerical Computing. 
Dr Phil Hayes, GMDSI Project, University of Queensland.



 
 

Glossary 
Anisotropy 
A condition whereby the properties of a system (such as hydraulic conductivity) are likely to 
show greater continuity in one direction than in another. At a smaller scale it describes a 
medium whose properties depend on direction. 

Bayesian analysis 
Methods that implement history-matching according to Bayes equation. These methods 
support calculation of the posterior probability distribution of one or many random variables 
from their prior probability distributions and a so-called “likelihood function” – a function that 
increases with goodness of model-to-measurement fit. 

Boundary condition 
The conditions within, or at the edge of, a model domain that allow water or solutes to enter 
or leave a simulated system. 

Boundary conductance 
The constant of proportionality that governs the rate of water movement across a model 
boundary in response to a head gradient imposed across it. 

Time-variant specified head (CHD) package 
A Dirichlet (i.e. “fixed head”) boundary condition implemented by MODFLOW in which the 
head can vary with time on a stress-period-by-stress-period basis. 

Covariance matrix 
A matrix is a two-dimensional array of numbers. A covariance matrix is a matrix that specifies 
the statistical properties of a collection of random variables - that is, the statistical properties 
of a random vector. The diagonal elements of a covariance matrix record the variances (i.e. 
squares of standard deviations) of individual variables. Off-diagonal matrix elements record 
covariances between pairs of variables. The term “covariance” refers to the degree of 
statistical inter-relatedness between a pair of random variables. 

Ensemble 
A collection of realisations of random parameters. 

Drain (DRN) package 
A one-way Cauchy boundary condition implemented by MODFLOW. Water can flow out of a 
model domain, but cannot enter a model domain through a DRN boundary condition.  

Evapotranspiration (EVT) package 
MODFLOW’s implementation of water withdrawal from a groundwater system whereby the 
extraction rate can increase, up to a user-supplied maximum, as the head approaches a user-
prescribed level from below. In MODFLOW 6, the rate of increase of extraction with head can 
be linear, or linear-segmented. 

General head boundary (GHB) package 
This is MODFLOW parlance for a Cauchy boundary condition. Water flows into or out of a 
model domain in proportion to the head difference between that ascribed to the boundary and 



 
 

that calculated for neighbouring cells. The rate of water movement through the boundary in 
response to this head differential is governed by the conductance assigned to the boundary. 

Hydraulic conductivity 
The greater is the hydraulic conductivity of a porous medium, the greater is the amount of 
water that can flow through it in response to a head gradient.  

Jacobian matrix 
A matrix of partial derivatives (i.e. sensitivities) of model outputs (generally those that are 
matched with field measurements) with respect to model parameters.  

MODFLOW 
A family of public-domain, finite-difference groundwater models developed by the United 
States Geological Survey (USGS). 

MODFLOW package 
An item of simulation functionality that describes one aspect of the operation of a groundwater 
system, for example recharge or a boundary condition. The word “package” describes the 
computer code that implements this functionality, as well as its input and output file protocols. 

Null space 
In the parameter estimation context, this refers to combinations of parameters that have no 
effect on model outputs that are matched to field observations. These combinations of 
parameters are thus inestimable through the history-matching process. 

Objective function 
A measure of model-to-measurement misfit whose value is lowered as the fit between model 
outputs and field measurements improves. In many parameter estimation contexts the 
objective function is calculated as the sum of squared weighted residuals. 

Parameter 
In its most general sense, this is any model input that is adjusted in order to promulgate a 
better fit between model outputs and corresponding field measurements. Often, but not 
always, these inputs represent physical or chemical properties of the system that a model 
simulates. However there is no reason why they cannot also represent water or contaminant 
source strengths and locations. 

Phreatic surface 
The water table. 

Pilot point 
A type of spatial parameterisation device. A modeller, or a model-driver package such as 
PEST or PEST++, assigns values to a series of points in two- or three-dimensional space. A 
model pre-processor then undertakes spatial interpolation from these points to cells 
comprising the model grid or mesh. This allows parameter estimation software to ascribe 
hydraulic property values to a model on a pilot-point-by-pilot-point basis, while a model can 
accept these values on a model-cell-by-model-cell basis. The number of pilot points used to 
parameterize a model is generally far fewer than the number of model cells. 



 
 

Prior probability 
The pre-history-matching probability distribution of random variables (model parameters in the 
present context). Prior probability distributions are informed by expert knowledge, as well as 
by data gathered during site characterisation. 

Posterior probability 
The post-history-matching probability distribution of random variables (model parameters in 
the present context). These probability distributions are informed by expert knowledge, site 
characterisation studies, and measurements of the historical behaviour of a system.  

Probability density function 
A function that describes how likely it is that a random variable adopts different ranges of 
values. 

Probability distribution 
This term is often used interchangeably with “probability density function”. 

Quadtree mesh refinement 
This term refers to a means of creating fine rectilinear model cells from coarse rectilinear 
model cells by dividing them into four. Each of the subdivided cells can then be further 
subdivided into another four cells. However it is a design specification of a quadtree refined 
grid that no cell within the domain of a model be connected to more than two neighbouring 
cells along any one of its edges. 

Realisation 
A random set of parameters. 

Regularisation 
The means through which a unique solution is sought to an ill-posed inverse problem. 
Regularisation methodologies fall into three broad categories, namely manual, Tikhonov and 
singular value decomposition. 

Residual 
The difference between a model output and a corresponding field measurement. 

Singular value decomposition (SVD) 
A matrix operation that creates orthogonal sets of vectors that span the input and output 
spaces of a matrix. When undertaken on a Jacobian matrix, SVD can subdivide parameter 
space into complementary, orthogonal subspaces; these are often referred to as the solution 
and null subspaces. Each of these subspaces is spanned by a set of orthogonal vectors. The 
null space of a Jacobian matrix is composed of combinations of parameters that have no effect 
on matrix outputs, and hence are inestimable. 

Solution space 
The orthogonal complement of the null space. This is defined by undertaking singular value 
decomposition on a Jacobian matrix. 

Specific storage 
The amount of water that is stored elastically in a cubic metre a porous medium when the 
head of water in which that medium is immersed rises by 1 metre. 



 
 

Specific yield 
The amount of accessible water that is stored in the pores of a porous medium per volume of 
that medium. 

Stochastic 
A stochastic variable is a random variable. 

Stress 
This term generally refers to those aspects of a groundwater model that cause water to move. 
They generally pertain to boundary conditions. User-specified heads along one side of a model 
domain, extraction from a well, and pervasive groundwater recharge, are all examples of 
groundwater stresses. 

Stress period 
The MODFLOW family of models employs this terminology to describe each member of a 
series of contiguous time intervals that collectively comprise the simulation time of a model. 
Within each of these time intervals, all model stresses are assumed to be time-invariant. 

Tikhonov regularisation 
An ill-posed inverse problem achieves uniqueness by finding the set of parameters that depart 
least from a user-specified condition, often one of parameter equality and hence spatial 
homogeneity.



 
 

Executive Summary 
This GMDSI worked example report describes a groundwater modelling project that is far from 
ordinary. Construction and calibration of the model rests on a comparatively small amount of 
data. As such, it addresses the commonly asked question, “how much data does one need in 
order to justify construction of a groundwater model to support the making of a decision?”. The 
response is that the premise of the question is incorrect. Lack of data instils high uncertainties 
in some model predictions. It is the model’s task to quantify these uncertainties. If a decision 
must be made in the midst of uncertainty, then it is better that this uncertainty be known than 
not. Furthermore, if even a small amount of data can support reduction of this uncertainty, 
then it is better that it be reduced through appropriate model-based data-processing than not.  

As it turns out, uncertainties ascribed to decision-critical predictions made by the model that 
is the subject of this report are smaller than were anticipated. This is because these predictions 
are closely related to observations that comprise the history-matching dataset. Assimilation of 
these data was an important component of the model construction and deployment process. 
However this alone did not ensure the model’s integrity in exploring the behaviour of the 
simulated system under future conditions that are likely to be more extreme than those for 
which data exist in the past. Model construction, parameterization and history-matching was 
also tuned to the assimilation of information contained in “soft data” that encapsulates 
qualitative and semi-quantitative knowledge of system behaviour. Constraints imposed on 
model parameters that ensure adherence to this behaviour mitigate aberrant model 
performance when it is asked to simulate future climatic conditions that, on occasion, may 
become extreme. 

The model described herein was built to assess water supply security for the township of 
Biggenden in south east Queensland, Australia. Biggenden draws its water from a small 
alluvial system to which it is adjacent. Extraction rates are monitored. Water level 
measurements are available from one of the two production bores from which water is 
extracted, and from three neighbouring observation bores. Measurements spanning the period 
2003 to 2017 comprise the history-matching dataset. 

The model domain spans a 4.4 km reach of the Degilbo Creek alluvium. All of its boundaries 
are open. The southern and northern boundaries of the model domain receive groundwater 
from, and deliver groundwater to, upstream and downstream alluvium. Its lateral boundaries 
receive water from a regional groundwater system which is of generally lower permeability 
than that of the alluvial system from which Biggenden draws its water. The alluvium itself 
receives water from diffuse and creek-bed recharge during wet seasons. Water is lost to the 
creek, and to near-creek evapotranspiration, during dry seasons. 

Recharge processes are simulated using a simple, fast-running, lumped-parameter model 
named LUMPREM. LUMPREM’s calculations are based on a single soil moisture store in 
which recharge, macropore recharge, evapotranspiration and runoff are nonlinear functions of 
currently stored water. Five instances of LUMPREM calculate recharge over five different parts 
of the domain of the Biggenden groundwater model. 

Seasonal fluctuations of the water table at model domain boundaries are also simulated using 
LUMPREM. LUMPREM provides functionality through which fluctuations in stored soil 
moisture can be transformed into fluctuations of head or drawdown. 

Flow of groundwater within the domain of the Biggenden groundwater model is simulated 
using MODFLOW 6. LUMPREM-calculated recharge and boundary heads are transferred to 
the groundwater model using time series functionality provided by MODFLOW 6. The 
MODFLOW 6 grid is quadtree-refined in the vicinity of creeks and bores. 



 
 

Simulation of water movement within the domain of the Biggenden groundwater model, and 
of exchange of water between the alluvial and regional groundwater systems, requires an 
appropriate level of process and parameterization complexity. Parameterization complexity is 
also required for representation of potential hydraulic property heterogeneity within the domain 
of the model. Spatially dense arrays of pilot points are used to represent hydraulic conductivity 
and specific yield - 628 pilot points for hydraulic conductivity and 148 pilot points for specific 
yield. A further 169 pilot point parameters are used to represent spatial variability of 
conductance along model boundaries and along the creeks which transect the alluvial system. 
A total of 81 parameters are associated with instances of LUMPREM, while another 2 
parameters describe anisotropy of hydraulic conductivity and specific yield heterogeneity 
within the Degilbo Creek alluvial system.  

A total of 1028 parameters are therefore ascribed to the Biggenden groundwater model. This 
is many more than can be estimated uniquely. However deployment of a large number of 
parameters reduces the possibility of history-matching-induced predictive bias. It also 
removes obstacles to calculation of predictive uncertainty incurred through failure to represent 
parameters, and combinations of parameters, that cannot be uniquely estimated. The last 
point is important, as inverse problem nonuniqueness is often the dominant contributor to 
groundwater model predictive uncertainty. It follows that accommodation of this 
nonuniqueness through introduction to the model domain of parameters, and combinations of 
parameters, that cannot be estimated, in addition to those that can, forestalls under-
representation of the uncertainties of decision-critical model predictions. 

Assessment of water supply security requires that the Biggenden groundwater model be 
provided with many different stochastic realizations of future weather; these are comprised of 
daily time series of precipitation and potential evaporation. One hundred such realizations 
spanning a 125 year predictive simulation period are employed. It also requires that these 
predictive model runs be repeated with many different realizations of model parameter fields, 
all of which are reasonable from a hydrogeological perspective, and all of which allow the 
model to replicate what is known of the historical behaviour of the system. Recall that this 
knowledge is encapsulated in water use records, borehole water level measurements, and in 
expert knowledge of system behaviour. Generation of stochastic sequences of daily rainfall 
and potential evapotranspiration is not described in this report. However this report does 
describe in some detail the workflow through which 250 realizations of calibration-constrained, 
hydrogeologically realistic parameter fields are generated. 

First the Biggenden groundwater model was calibrated using the PEST_HP parameter 
estimation package. In describing this aspect of the workflow, the report distinguishes the 
notion of “calibration” from that of “history-matching”. The former term has a precise meaning; 
it is history-matching conducted in pursuit of a model parameter field that approaches that of 
minimized error variance. Uniqueness of this parameter field is achieved through 
implementation of an appropriate regularisation strategy. For the Biggenden model, Tikhonov 
regularisation constraints are enforced. These comprise a suite of strategic penalty functions 
that discourage the introduction of parameter heterogeneity unless it is geologically plausible. 
At the same time, introduced heterogeneity is limited to the minimum amount that is required 
for model outputs to attain a good with the calibration dataset. 

Once a parameter field of minimized error variance has been attained in this way, the 
PESTPP-IES ensemble smoother is employed to seek a further 250 parameter fields in which 
the potential for hydraulic property heterogeneity is allowed full expression, but in which the 
necessity for a tight fit with hard and soft components of the calibration dataset is maintained. 
Initial parameter realisations for the ensemble inversion process are sampled from an 
approximate posterior parameter probability distribution calculated using the Jacobian matrix 



 
 

attained by PEST_HP. The ensemble inversion process benefits from the “head start” that this 
workflow provides. 

Following completion of the above tasks, the Biggenden groundwater model is deployed to 
assess water supply security for the township of Biggenden. Security is specified using a 
model-calculated “delivery ratio”. The delivery ratio is the amount of water that the aquifer can 
deliver expressed as a fraction of the amount of water that is requested. A delivery ratio of 
less than unity denotes a shortfall in supply. A delivery ratio exceedance probability curve is 
constructed using outputs from the Biggenden model when run into the stochastic future. 
Using different realizations of future weather and model parameter fields, upper and lower 
uncertainty bounds are placed on delivery ratio exceedance probabilities.  

This report partitions delivery ratio uncertainty between its two contributors – that arising from 
uncertainty in future weather on the one hand, and that arising from uncertainty in model 
parameters on the other hand. (The latter express shortfalls in knowledge of system properties 
and behaviour). It is demonstrated that uncertainties in Biggenden water supply security are 
dominated by uncertainties in future weather rather than by uncertainties in system properties 
and behaviour. This is a rather surprising conclusion, given the dearth of data on which 
construction of the Biggenden groundwater model rests. However it indicates that data of the 
right type exists at the right time and at the right places to reduce the uncertainties of 
predictions that matter. Uncertainty reduction is achieved through matching model outputs to 
these data. The uncertainty that remains is quantified through the modelling workflow. 

Modelling that was undertaken in order to assess water supply security for the township of 
Biggenden was designed to serve the decision-support imperatives of uncertainty 
quantification and reduction. Although there is room for improvement in all modelling work, we 
consider that construction, history-matching and deployment of the Biggenden groundwater 
model has served these imperatives well.  
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1. INTRODUCTION 
1.1 The Site 
Biggenden has a population of about 850. It is situated 300 km NNW of Brisbane, Queensland 
on the road between Maryborough (a coastal town with a population of about 16,000) and 
Gayndah (a regional centre with a population of about 2000). The name is derived from 
“bigindhan”, meaning “place of stringybark” in local Aboriginal (Kabi) dialect. Biggenden was 
founded in 1889 as a service centre for the short-lived goldrush towns of Paradise and 
Shamrock, and for coach passengers travelling west from Maryborough. Nowadays, primary 
production (mainly beef cattle) is the local area’s most significant industry; grain crops are also 
grown. Biggenden’s location is shown in Figure 1.1.  

 
Figure 1.1. Location of Biggenden in relation to some major Queensland towns. 

Biggenden’s yearly average rainfall is 882 mm. However this has varied from as low as 334 
mm to as high as 1800 mm. Most rain falls in the summer months between October and March. 

Degilbo Creek passes about 2 km east of Biggenden. The closest gauging station on this 
creek is about 25 km downstream. Flow is seasonal. Mungore Creek joins Degilbo Creek just 
to the southeast of Biggenden.  

Since 1965, Biggenden has drawn its water from local alluvium and underlying basalt 
bordering Degilbo Creek. A small number of stock and domestic bores also draw water from 
the Degilbo Creek alluvium in the vicinity of Biggenden. Figure 1.2 shows Biggenden township 
and the two bores from which it draws water, namely RN156052 and RN155332. About 75% 
of this supply is drawn from the former bore while the remainder is drawn from the latter bore. 
Three nearby observation wells (RN13600296, RN13600186 and RN13600186) are also 
shown. A series of five, more distant, observation wells are situated south (and upstream) of 
the Biggenden bore field along the Maryborough-Biggenden road. The frequency of water 
level measurements in these observation bores varies from weekly to six-monthly.  
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Figure 1.2. Location of pumping bores, monitoring bores and watercourses near Biggenden. 

RN156052 and RN155332 were drilled in 1965 and 1980 respectively. Intermittent 
measurements of groundwater level have been made in the former bore (the main Biggenden 
supply well). Some of these measurements were made when the pump was running, while 
other measurements were made when it was switched off. No water level measurements have 
been made in the other production bore. Water levels measured in RN156052 are graphed in 
Figure 1.3; observations are linked by dotted lines to improve clarity.  
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Figure 1.3. Measured water levels in bore RN156052. 

Pumping from RN156052 and RN155332 is not metered. However records of water use are 
available for the Biggenden water treatment facility from September 2008 to the present day.  

1.2 The Problem 
Queensland Hydrology Unit (QHU) of the Department of Environment and Science (DES) was 
asked by the Queensland Department of Natural Resources, Minerals and Energy (DNRME) 
to assess the long-term security of Biggenden’s water supply. This was done as part of a 
larger Regional Water Supply Security Assessment (RWSSA) project conducted by DNRME.  

Prior to the Biggenden study, the towns and cities for which water supply security assessments 
had been undertaken were all reliant on surface water. These assessments were made using 
existing models of managed river systems. These models are provided with stochastic 
realisations of daily rainfall and potential evaporation extending up to 1,000 years into the 
future. Using these realisations of future weather, the models predict volumes of water in the 
river and creek storages from which these communities draw their water. Water supply failure 
occurs when available water is insufficient to meet demand. The success (or otherwise) of 
different management strategies in prolonging water availability can also be tested with this 
modelling approach. These strategies normally invoke water use restrictions when storage 
water levels fall below certain thresholds. 

1.3 The Challenges 
Where water supplies are drawn from man-made storages in rivers and creeks, uncertainties 
associated with their adequacy arises from uncertainties in future rainfall. The amount of creek 
and river flow that follows a rain event can be predicted with a high degree of reliability from 
the historical behaviour of the system, for which long-term records of rainfall and flow are often 
available. The volumes of river and creek storages are also known. Seepage and evaporative 
losses from these storages as a function of stored water volume are readily calculable.  
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In contrast, where water supplies are extracted from a groundwater system, the knowledge 
base is far smaller. Information inadequacies are exacerbated where measurements of 
historical groundwater levels have been made in only a few wells, and where these 
measurements do not extend far back in time. The size of a groundwater storage is only 
approximately known. Furthermore, its boundaries are pervious; hence unknown amounts of 
water can flow into and out of a local system from neighbouring systems. Access to stored 
water by borehole pumps is highly dependent on geological conditions that prevail in the 
immediate vicinity of boreholes. The extent to which rainfall recharges a groundwater storage 
is often only vaguely understood; so too is the ability of a groundwater system to gain or lose 
water from/to a creek or river which transects it. 

It follows that uncertainties in predictions of future groundwater availability are likely to be 
greater than those associated with future surface water availability. Assessment of water 
supply security must take limited knowledge of system geometry, properties and recharge into 
account. 

1.4 Meeting the Challenges 
As stated above, assessment of surface water supply security requires that an appropriate 
model be run using a suite of sequences of possible future weather. The same applies to 
assessment of groundwater supply security. However the groundwater model on which this 
assessment relies should also be run using many stochastic realisations of system hydraulic 
properties and recharge. Ideally, these realisations should express enough stochastic 
variability to ensure that they encompass the system’s true properties and recharge, hence 
ensuring that risks to water supply are not under-estimated. At the same time, they should 
also avoid over-estimation of risk incurred by failure to assimilate all available information. 
This requires that any realisation that is used to explore the future behaviour of the system 
must also allow the model to reproduce its historical behaviour when it is run under weather 
conditions which prevailed in the past. Generation of such a suite of “realistic”, calibration-
constrained parameter fields is one of the challenges facing water supply security assessment 
for the township of Biggenden.  

The availability of data on which to base construction of a groundwater model for the Degilbo 
Ck alluvium from which Biggenden draws its water supply is far less than at most sites at 
which groundwater models are constructed. This does not preclude construction of a model, 
as this is required for water supply security assessment. However it suggests that the 
uncertainties associated with model predictions will be high. This makes the need for 
uncertainty reduction through assimilation of all pertinent information on system behaviour 
even more pressing. This information is comprised of discrete measurements of historical 
water levels in a small number of bores. It also includes qualitative knowledge of how the 
groundwater system behaves. These two sources of information are referred to as “hard data” 
and “soft data” in this report. 

Water levels in one pumped bore, and in a small number of nearby observation bores 
comprise available hard data. A pumped bore fails when the water level in that bore falls below 
the pump intake. In anticipation of this condition, water restrictions may be imposed when 
borehole water levels cross thresholds that are somewhat above this. In a shallow 
groundwater system such as that from which Biggenden draws its water, centimetres of head 
in the pumped bore can make the difference between failure and security. While there are no 
expectations that model predictive uncertainties can be this low, construction and deployment 
of a water supply security model comes with the responsibility that uncertainties be reduced 
as much as available data allows. This requires that all stochastic realisations of system 
hydraulic properties that are used to explore predictive uncertainty allow the model to 
reproduce historical borehole water levels as well as possible. 
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“Soft data” is more abundant, but is less accurate. Nevertheless it is important that these data 
be respected, for they have the potential to constrain model parameters that represent system 
hydraulic properties to values that deter model predictions from attaining unrealistic extremes. 
By design, the model will be asked to make predictions of groundwater behaviour under 
conditions that have not been experienced in the past. It is well known that attainment of a 
good fit with historical hard data (as is sought for the present model) may compromise its 
performance under extreme conditions unless “reality checks” are enforced on parameters 
that are estimated through this fitting procedure. Assimilation of soft data therefore assumes 
extra importance. 

For the Biggenden model, items of “soft data” include (but are not limited to) the following 
aspects of system behaviour. 

• Groundwater flows preferentially within, and parallel to, the alluvial system 
associated with Degilbo and Mungore Creeks.  

• Water that enters the local alluvial system from upstream (i.e. from the south) exits 
the local system downstream (i.e. to the north) through the alluvial system itself. 
Water is unlikely to flow upstream through either of these boundaries during either 
wet or dry seasons. 

• Groundwater levels in non-alluvial areas which border the Degilbo and Mungore 
Creek alluvial systems rise and fall with season. Some water enters these systems 
from upland areas which border them. Little, if any, water is likely to flow in the 
opposite direction, especially during dry seasons.  

• Except during very wet events, the phreatic surface intersects the land surface only 
at Degilbo and Mungore Creeks.  

• During any wet season, the depth to the phreatic surface is unlikely to be greater 
than 12m in any part of the study area. This is the greatest wet season depth 
recorded in any local observation bore. 

• Given the nature of alluvial deposition, hydraulic property heterogeneities are more 
likely to be disposed parallel to the creek system than orthogonal to it. 

• Studies of similar systems, for example Wohling et al. (2011) and King et al. (2017), 
suggest that long term recharge to the Degilbo and Mungore Creek alluvial systems 
is likely to be between 1% and 5% of average rainfall. However it is also likely to be 
highly seasonal.  

The status of Degilbo and Mungore creeks as gaining or losing streams in the vicinity of 
Biggenden township is unknown. It is possible that the alluvial groundwater system receives 
recharge from these streams during high flow events. It is most unlikely, however, that it 
receives recharge from these creeks during dry periods when they do not flow. Periods of 
most predictive interest are confined to these dry periods. 

1.5 Desired Modelling Outcomes 
For the Biggenden model, water supply security is assessed by running it for 125 years into 
the future using different stochastic realisations of rainfall and potential evaporation. For any 
one of these realisations, the model must calculate water levels in the two production wells. 
Meanwhile the model must automatically reduce pumping from these wells as predicted water 
levels decline. In particular, the model must maintain borehole water levels at or above pump 
intakes. At the same time, it must be capable of simulating pre-emptive reductions in water 
extraction at higher water level thresholds in accordance with water restrictions imposed in 
times of drought, this enabling the model to test their efficacy.   
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Model predictions of most interest are therefore future borehole extraction rates, particularly 
during times when these are reduced automatically by the model. Notwithstanding assimilation 
of hard and soft data in the manner described above, it is anticipated that these predictions 
will be accompanied by uncertainty. They must therefore be made using multiple realisations 
of history-match-constrained parameter fields, together with multiple realisations of future 
weather. Both of these sources of uncertainty can thereby be taken into account when 
assessing risks to water supply reliability. 

Generation of stochastic time series of daily rainfall and evaporation is beyond the scope of 
this report. It is discussed by Vitkovsky (2008). The present report addresses the design and 
construction of the Biggenden groundwater model, and its population by random parameter 
fields that allow the model to replicate hard and soft data on historical system behaviour. 

1.6 Remainder of this Report 
As discussed in the preface, the document that you are reading is not intended to be a 
modelling report, despite the fact that it describes a groundwater model. Instead, it attempts 
to describe a particular approach to decision-support modelling using the Biggenden 
groundwater model as an example.  

Construction and parameterisation of the Biggenden model are briefly described in Chapter 2. 
In order to maintain reader interest, many details are omitted. Nevertheless, we hope that the 
description is detailed enough for a reader to understand how the modelling goals described 
above were pursued.  

Chapter 3 comprises a further departure from conventional modelling reporting. In this chapter 
we justify some of the model design features that are described in Chapter 2. We feel that this 
discussion is better presented after these features are described, than before.  

Chapter 4 describes those aspects of the historical behaviour of the Degilbo Creek 
groundwater system that must be reproduced by the model. These constrain the values of 
parameters with which the model must be endowed when calculating its future behaviour.  

Chapter 5 discusses how model calibration was achieved. It also discusses the notion of 
“calibration” itself, and how this should be distinguished from “history-matching”.  

Chapter 6 then describes how not just one, but many, history-match-constrained stochastic 
parameter fields were obtained. The use of these parameter fields in examining Biggenden 
water supply security is addressed in Chapter 7. Chapter 8 concludes this report. 
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2. SIMULATION 
2.1 General 
Simulation of groundwater movement in the Degilbo Creek alluvial system must take place 
over two time periods. The first of these periods is historical, while the second is predictive. 
During the first of these periods, model runs are controlled by data assimilation software, 
namely PEST_HP (Doherty, 2020) and PESTPP-IES (PEST++ Development Team, 2020). 
This is done in order to derive a suite of stochastic parameter fields which allow the model to 
replicate historical system behaviour. 250 of these parameter fields are generated. Ideally, 
these parameter fields sample the posterior (i.e. post-history-matching) probability distribution 
of model parameters. 

The second simulation time period is predictive. Over this period the stochastic parameter 
fields derived by PEST_HP and PESTPP-IES are employed to make predictions of 
groundwater behaviour under conditions defined by stochastic sequences of future rainfall and 
potential evapotranspiration. These predictions are thereby imbued with two levels of 
stochasticity, namely (a) that associated with uncertainties in future weather patterns and (b) 
that associated with uncertainties in hydraulic properties of the Degilbo Creek alluvial system. 

2.2 Simulators 
2.2.1 MODFLOW 6 
At the time of writing, MODFLOW 6 (Langevin et al, 2019) is the latest generation of the USGS 
family of MODFLOW simulators. Of primary interest to the present project is its ability to 
employ an unstructured grid. This supports grid refinement in the vicinity of Degilbo and 
Mungore Creeks, and in the vicinity of the two extraction wells. 

Another convenient feature of MODFLOW 6 is its ability to read time series from external files. 
This facilitates its use in conjunction which programs such as LUMPREM (see below) which 
can compute transient stresses and boundary conditions used by MODFLOW 6. The time 
base pertaining to these external time series can be independent of that used by MODFLOW 
6 itself to calculate system states. They can therefore be set by the programs which generate 
them.  

Yet another convenient feature of MODFLOW 6 is its ability to employ multiple incidences of 
the same stress package. The Biggenden model employs the MODFLOW 6 EVT package to 
simulate groundwater losses to evaporation in the vicinity of streams. This same package is 
also used to automate reduction of well extraction as borehole groundwater levels fall. 
Reduction of extraction occurs for two reasons: 

1. To prevent the water level in a production bore from falling below the pump intake 
level; and 

2. To implement water restrictions imposed during drought conditions. 

The EVT package allows implementation of the latter option using a stepped sequence of 
increasing restrictions with reducing borehole water levels. For brevity, use of the EVT 
package in implementing these restrictions is not discussed further in this document.  

2.2.2 The LUMPREM Recharge Model 
The LUMPREM model, together with it manual (Doherty, 2020), can be downloaded from the 
PEST web pages at http://www.pesthomepage.org. “LUMPREM” stands for “lumped 
parameter recharge model”. LUMPREM simulates processes that are operative in the 
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unsaturated zone overlying the water table using a single soil moisture store. Water can leave 
the store as either evaporation or groundwater recharge at rates that are calculated as 
nonlinear, user-parameterizable functions of stored moisture volume. If the soil moisture store 
overtops, water is lost as macropore recharge to groundwater and/or as runoff. Macropore 
recharge suffers a user-specified delay before being made available for groundwater 
recharge. A schematic of this process is provided in Figure 2.1.  

Through adjustment of parameters which govern: 

• the size of the soil moisture store; 
• the nonlinear relationship between recharge and stored soil moisture; 
• the nonlinear relationship between evapotranspiration and stored soil moisture; and 
• the delay suffered by macropore recharge; 

the quantity and timing of recharge can resemble that calculated by much more complicated 
models (Watson et al, 2013; Meeks et al, 2017).  

 
Figure 2.1. Schematic of the LUMPREM recharge model. 

Let v' denote the volume of moisture stored in the soil moisture store relative to the total 
volume of the store. LUMPREM calculates daily evaporation E as function of v' using the 
equation: 
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where Ep is potential evaporation. f can be considered as a “crop factor” and γ as a “fitting 
parameter”.  

LUMPREM calculates daily recharge R from v' using the relationship: 
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where Ks represents soil saturated hydraulic conductivity, l is a pore-connectivity parameter 
and m is a fitting parameter. See the LUMPREM manual for further details. 
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LUMPREM operates on a daily time step. It reads daily values of rainfall and potential 
evaporation from its input files. It records daily values of normal and macropore recharge, 
runoff, evaporation, and residual evaporation (i.e. potential evaporation minus actual 
evapotranspiration) on its output file, together with other quantities. A utility program supplied 
with LUMPREM named LR2SERIES (i.e. “LUMPREM to time series”) writes MODFLOW 6 
time series files based on the contents of a LUMPREM output file. Thus LUMPREM outputs 
can serve as inputs for various MODFLOW 6 packages. In particular, recharge calculated by 
LUMPREM can provide inputs for the MODFLOW 6 RCH (i.e. recharge) package; residual 
evapotranspiration calculated by LUMPREM can provide the “maximum ET” input for the 
MODFLOW 6 EVT (i.e. evapotranspiration) package. 

LUMPREM also records the daily volume of stored water on its output file. This quantity can 
rise steeply after rainfall and decay slowly thereafter. As such, its behaviour is not unlike that 
of groundwater levels in a shallow aquifer. LUMPREM allows a user to calculate a pseudo 
groundwater head time series from these daily volumes using a nonlinear function whose 
parameters can be set by the user, and/or adjusted through history matching. This pseudo 
head time series is also recorded on its output file. Like other time series that are recorded in 
this file, it can serve as an input time series for a MODFLOW 6 stress package. LUMPREM 
employs the following equation to transform stored moisture volume to head: 

 h = a + f1v' + f2(v')p        (2.3) 

In this equation v' denotes the volume of stored water relative to the total capacity of the store, 
h denotes the head that is calculated from it, and a, f1, f2 and p are parameters. 

As is discussed below, nine instances of the LUMPREM model are used in conjunction with 
the MODFLOW 6 groundwater simulator in the Biggenden model. Five of these models 
compute recharge in different parts of the model domain. Four are used for calculation of 
boundary heads. The following parameters of all of these models are adjusted through history-
matching: 

• Ks 
• m 
• f 
• γ 
• a, f1 ,f2 and p (for those instances of LUMPREM which compute boundary heads). 

2.2.3 Stress Periods  
LUMPREM calculates its outputs on a daily basis. In contrast, time steps and stress periods 
employed by MODFLOW 6 are user-selectable. For simulation of groundwater flow in the 
Degilbo Creek alluvium, a 14 day stress period is employed by MODFLOW 6 in both its history-
matching and predictive simulations. Pertinent LUMPREM daily outputs are averaged over 
the time spanning each MODFLOW 6 stress period before being provided to MODFLOW 6. 

2.3 The Biggenden Groundwater Model 
2.3.1 The Model Domain 
Figure 2.2 shows the grid of the Biggenden groundwater model. The domain of the model 
spans the Degilbo and Mungore Creek alluvial systems. It extends approximately 1.7 km north 
and 2.7 km south of the Biggenden production wells. The southwestern extremity of the model 
domain coincides with a line of observation bores beside the Maryborough-Biggenden Road.  

Over most of the model domain, cell dimensions are 40m × 40m; they are quadtree-refined to 
5m × 5m in the vicinity of pumping wells, and to 10m × 10m near creeks. The model employs 
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just a single, unconfined layer. Its domain covers an area of 6.35 km2. The top elevation of 
each cell is set to the topographic elevation. MODFLOW 6 “drains” (implemented using its 
DRN package), incised 3m into the land surface, are used to represent watercourses. These 
are thus represented as groundwater sinks; this is their role in the dry season where model 
predictions are of most interest.  

 
Figure 2.2. The domain of the Biggenden groundwater model; topography is also shown.  

2.3.2 Northern and Southern Alluvial Boundaries    
Connections to the extended Degilbo and Mungore Creek alluvial systems at the southern 
(downstream) and northern (upstream) boundaries of the model domain are simulated using 
fixed head cells; this is implemented using the MODFLOW 6 CHD package. These alluvial 
heads vary with season. These seasonal variations are represented using the pseudo-head 
functionality of the LUMPREM recharge model. A single LUMPREM-based model is used to 
simulate variability of all of these heads. This model is actually comprised of two LUMPREM 
models in series, such that recharge from one provides “rainfall” input to the other. (Piggy-
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backed LUMPREM models realize a better fit with borehole-observed water levels at model 
boundaries than a single LUMPREM model.) This dual LUMPREM model was calibrated 
against water levels measured in bore RN13600185 over the period June 1993 to August 
2017. This observation well is situated on the south-western alluvial boundary of the 
Biggenden groundwater model.  

Figure 2.3 shows the fit between water levels measured in this bore, and those calculated by 
the calibrated, dual LUMPREM model. Figure 2.3a displays LUMPREM-calculated water 
levels only at borehole measurement times; Figure 2.3b shows LUMPREM-calculated water 
levels at regular, fortnightly intervals.  

 

 
Figure 2.3 Measured and model-calculated water levels in bore RN13600185. The latter are displayed for 
LUMPREM (a) at times of water level observations (top) and (b) at regular, fortnightly intervals (bottom).  



12 

 

Depths to the phreatic surface at the location of RN13600185 are computed by subtracting 
LUMPREM-calculated heads from the surface elevation. Heads at all CHD cells along both 
the northern and southern boundaries of the Biggenden groundwater model are then 
calculated by subtracting this depth from surface elevations in each cell along these model 
boundaries.  

Table 2.1 lists LUMPREM parameters whose values were estimated by history matching 
against heads in RN13600185. Tikhonov regularisation and singular value decomposition 
were used as regularisation devices to ensure numerical stability and achieve parameter 
uniqueness. Note that, with the exception of hydraulic conductivity anisotropy (see below) 
these are the only parameters of the Biggenden model for which calibration-constrained 
stochastic realisations were not generated; the single set of parameter values obtained in the 
manner described above were therefore used when running the Biggenden model into the 
future. It was felt that alluvial model boundaries are sufficiently removed from Biggenden 
pumping wells for their uncertainties to matter little to model predictions of most interest.  

Parameter type Number of 
parameters 

Ks 2 

m 2 

f 2 

γ 2 

a 1 

f1 1 

f2 1 

p 1 

Table 2.1 Parameters of the dual LUMPREM model that were adjusted in order to fit heads measured in 
RN13600185. 

2.3.3 Eastern, Western and Southern Boundaries 
Along its eastern and western boundaries, and along part of its southern boundary, the 
Biggenden groundwater model requires connections to a shallow, regional, non-alluvial 
groundwater system in which hydraulic conductivities are expected to be low. These 
connections are simulated using MODFLOW 6 general head boundaries (i.e. GHBs). A GHB 
condition is established in every one of these boundary cells.  

Like alluvial boundaries, heads along the eastern, western and southern boundaries of the 
Biggenden groundwater model are expected to fluctuate with season. These fluctuations are 
also simulated using the pseudo head functionality of the LUMPREM recharge model. Three 
LUMPREM models are deployed, one for each boundary. Each of these models was used to 
calculate water depth along the entire boundary. The head assigned to the GHB ascribed to 
each cell along these boundaries is calculated by subtracting this depth from the local surface 
elevation.  
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The parameters of the LUMPREM models associated with the eastern, western and southern 
boundaries were estimated through history-matching of the entire Biggenden model, both 
during calibration of that model and in subsequent history-match-constrained stochastic 
parameter field generation. Meanwhile GHB conductances are parameterized using pilot 
points; see below. These are also history-match-constrained. 

2.3.4  Recharge and EVT 
Recharge throughout the domain of the Biggenden groundwater model is computed using five 
instances of the LUMPREM model. One of these instances operates in each of five different 
zones. These zones are depicted in Figure 2.4; they are comprised of four riparian zones and 
a pervasive open pasture zone. The MODFLOW 6 EVT package also operates within each of 
the four riparian zones; in each of these zones a time series of maximum EVT rate is provided 
by the corresponding LUMPREM recharge model. LUMPREM calculates potential 
evaporation available to the groundwater system by subtracting evapotranspiration calculated 
using equation 2.1 from potential evaporation for each day.   

2.3.5 Summary of Boundary Conditions 
Incidences of LUMPREM used to define boundary condition heads on the one hand, and 
recharge rates on the other hand, are summarized pictorially in Figures 2.4a and 2.4b.  
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Figure 2.4a. Time-varying 
heads ascribed to lateral 
boundary conditions of 
the Biggenden 
groundwater model are 
calculated using four 
dedicated LUMPREM 
models for depth-to-water 
(DWT), one of which is 
actually a dual LUMPREM 
model. The boundary 
conditions on the eastern, 
western and southern 
sides of the model are 
GHBs. Conditions on the 
northern, south-eastern 
and south-western alluvial 
boundaries are 
represented by CHDs.   

 

 

 

 

 

 

 

Figure 2.4b Recharge is 
supplied to the MODFLOW 
6 RCH package of the 
Biggenden groundwater 
model using five 
incidences of LUMPREM. 
Four of these LUMPREM 
incidences also provide 
maximum EVT rate to the 
MODFLOW 6 EVT 
package. 
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2.4 Spatial Parameterisation 
2.4.1 Hydraulic Conductivity and Specific Yield 
MODFLOW 6 requires that values be supplied for hydraulic conductivity (Kh) and specific yield 
(Sy) throughout its domain. Pilot points are used as a parameterisation device for both of 
these. Those for Kh are illustrated in Figure 2.5a while those for Sy are illustrated in Figure 
2.5b. 

As is apparent from Figure 2.5b, Sy pilot points are uniformly distributed throughout the model 
domain; each is about 200m from its nearest neighbour. Kh pilot points are 100m apart, except 
in the vicinity of extraction wells where they are 75m apart. 

 

 
Figure 2.5a. (left) Pilot points used for parameterisation of hydraulic conductivity (Kh). 

Figure 2.5b. (right) Pilot points used for parameterisation of specific yield (Sy). 

Spatial interpolation from pilot points to the model grid employs the alluv_boundary_interp() 
function of PLPROC. PLPROC (Doherty, 2020) is a “parameter list processor” supplied with 
the PEST suite. It was written specifically to facilitate flexible pilot points parameterisation of 
two- and three-dimensional model domains. The alluv_boundary_interp() function supports 
anisotropic interpolation from pilot points to a model grid. The principle axis of anisotropy used 
in this interpolation varies throughout the model domain in accordance with the orientation of 
the closest boundary of an alluvial system. A single anisotropy value is employed for 
interpolation of each of Kh and Sy. These anisotropies were estimated during the model 
calibration process.  

2.4.2 GHB and DRN Conductances 
As was discussed above, the Biggenden model employs the MODFLOW 6 GHB package 
along its eastern and western margins, and along part of its southern margins, to simulate 
connections with the regional, non-alluvial, groundwater system. At the same time, the 
MODFLOW 6 DRN (i.e. drain) package allows water to flow from the groundwater system into 
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Degilbo and Mungore Creeks. Both of these packages require a conductance term that 
controls the rate of water flow into or out of the groundwater system.  

In order for the conductance of these polylinear boundary features to vary along their lengths 
they, too, are parameterized using pilot points. The locations of these pilot points are shown 
in Figure 2.6. Interpolation between them and the boundaries that they inform is linear. This is 
accomplished using a specially written program. It can also be accomplished using so-called 
“SEGLIST” functionality provided by PLPROC. 

 
 Figure 2.6. Pilot points used for parameterisation of GHB and DRN boundary conductances. 

2.5 Parameterisation Overview  
2.5.1 Number of Parameters 
It is apparent from the above discussion that the Biggenden groundwater model is simple in 
some respects and complex in others. It is also apparent that it is endowed with many more 
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parameters than can be estimated uniquely. To refresh the reader’s memory, parameterisation 
of the Biggenden model is summarized in Table 2.2. 

Parameter type Role Number of 
parameters 

LUMPREM Calculation of recharge and residual ET in 5 surficial 
zones 

45 

LUMPREM Calculation of head for CHD alluvial boundaries 12 

LUMPREM  Calculation of head for GHB lateral boundaries 24 

Pilot points Hydraulic conductivity (Kh) 628 

Anisotropy Interpolation from Kh pilot points to model grid 1 

Pilot points Specific yield (Sy) 148 

Anisotropy Interpolation from Sy pilot points to model grid 1 

Pilot points Creek DRN conductance 99 

Pilot points GHB conductance at lateral boundaries 70 

Total 1028 

Table 2.2. Parameters used by the Biggenden groundwater model. 

As has already been stated, the 12 LUMPREM-related parameters associated with the CHD 
alluvial boundaries were estimated only once. This was done through a calibration exercise 
focussed only on water levels in RN13600185. The two parameters that characterize 
interpolation anisotropy from pilot points to the model grid were also estimated only once, this 
during calibration of the entire Biggenden model. All other parameters were estimated many 
times – once during the calibration process, and then repeatedly during calculation of history-
match-constrained random parameter fields. 
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3. SOME NOTES ON MODELLING 
PHILOSOPHY 
3.1 General 
At this stage of our report we take the rather unusual step of discussing the rationale for 
building and parameterizing the Biggenden model in the way that we did. We do this now while 
its construction and parameterisation details are fresh in the reader’s mind. 

Aspects of model construction and parameterisation that may appear unusual to some readers 
include the following: 

• the use of so many parameters in a context where there is little data to inform them; 
and 

• implementation of a physically-based model in conjunction with somewhat abstract 
boundary conditions, the use of which requires parameters whose physical meaning 
is not clear. 

We now address these, and other, potential concerns. 

3.2 Parameters 
All groundwater systems are complex. All are heterogeneous. Hydraulic properties differ from 
location to location in unknown ways. Nevertheless, at any particular study site, expert 
knowledge can generally place limits on the range of prevailing hydraulic property values. 
Expert knowledge may also be capable of characterizing the nature and disposition of 
hydraulic property heterogeneity. For example, it may suggest that heterogeneity is more 
continuous in some directions than it is in others; it may be able to associate heterogeneity 
correlation lengths with different directions. 

The use of many parameters recognizes the heterogeneity of subsurface properties. It is 
important to recognize, however, that use of a large number of parameters does not prevent 
attainment of a unique, minimum-error-variance solution to the inverse problem of model 
calibration. (“Calibration” is precisely defined in the next chapter.) Nor does it propel the 
history-matching process into over-fitting of field measurements. However, as is described by 
Doherty (2015), use of a large number of parameters does achieve a number of important 
outcomes: 

1. It prevents inadequacies in representation of potential heterogeneity from 
compromising the fit attained between field measurements and their model-
calculated counterparts. For reasons described in Chapter 1 of this document, 
attainment of a good fit between model-calculated and borehole-measured heads is 
of fundamental importance to the decision-support role which the Biggenden model 
must play. 

2. It allows maximum flexibility of parameter response to information contained within a 
measurement dataset. This flexibility limits the chances of calibration-induced 
predictive bias. 

3. If parameters are endowed with a stochastic characterisation that is reflective of 
prevailing geology, the use of a large number of parameters reduces the chances 
that the uncertainties ascribed to decision-critical model predictions are 
underestimated. 
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3.3 Boundary Conditions 
The boundaries of the Biggenden model domain are not the natural boundaries of the local 
groundwater system. Hence they cannot be assigned a status of static fixed head nor no-flow. 
Groundwater levels at these boundaries vary with season. The most important predictions 
required of the Biggenden model are those associated with droughts. During times of drought, 
boundary water levels and flows are low, and should be represented as such. 

It is impossible to represent groundwater behaviour at these boundaries exactly. Nor is it 
possible to exactly represent the connection of the local groundwater system with the wider 
groundwater system through these boundaries. Nevertheless, it is important to represent the 
fact that heads at these boundaries fluctuate, and that inflow and outflow of water to/from the 
domain of the Biggenden groundwater model is sensitive to these heads. It is also important 
that representation of these fluctuations by the model be “realistic”, stochastic, and 
constrained by any hard and/or soft data that has the potential to inform them.  

The pseudo-head functionality of the LUMPREM model allows heads ascribed to these 
boundaries to fluctuate with season. Inclusion of LUMPREM model parameters in the model 
history-matching process constrains boundary head variability to realistic levels. The use of 
history-match-adjustable pilot points to characterize boundary conductances limits the extent 
to which the alluvial groundwater system can draw water from the regional groundwater 
system. 

3.4 Safeguarding Parameter Integrity 
As has already been discussed, the Biggenden model is designed to make predictions under 
conditions that will be somewhat different from those which prevailed during history-matching. 
Biggenden’s water supply has not failed to date. However, when provided with stochastic 
realisations of future rainfall and potential evaporation, it is likely that there will be times in the 
stochastic future when conditions will be drier than those which prevailed in the past, and more 
extreme than those which were experienced over the relatively short calibration period. Model 
predictions will be uncertain over these periods. In ways that have already been explained, 
the Biggenden model has been constructed in a way that allows it to quantify these 
uncertainties. Nevertheless, parameter safeguards must be put in place that circumvent erratic 
model behaviour under the extreme drought conditions that it has been built to explore. 

A model’s ability to faithfully replicate the past provides some assurance that its predictions of 
future system behaviour are reliable when conditions in the future are not dissimilar from those 
which prevailed in the past. However, it is well known that the attainment of a good fit with a 
calibration dataset can sometimes achieve exactly the opposite of this under different 
predictive conditions, particularly those which pertain to climatic extremes. Safeguards were 
put in place to prevent this when history-matching the Biggenden model. These safeguards 
are as follows. 

• For parameters such as Kh and Sy that have hydrogeological interpretations, 
regularisation (used during calibration) and stochastic field generation (used during 
uncertainty analysis) maintained hydraulic property reasonableness (i.e. values for 
these properties that are in accordance with expectations based on geology). 

• For parameters which are not so physically-based (for example, LUMPREM 
parameters that determine the behaviour of time-varying heads at model 
boundaries), regularisation and stochastic field generation ensured that these 
parameters are not endowed with extreme values, and that variability of these 
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parameters between individual LUMPREM model instances is mitigated. (High 
parameter variability is a common sign of over-fitting.) 

• As has been discussed, “soft data” forms an important component of the dataset 
used for history-matching of the Biggenden model. The parameter field which is 
deemed to “calibrate” the model (see the next chapter), and stochastic parameter 
fields which allow the model to reproduce heads in observation wells, therefore also 
encouraged the model to behave reasonably (from an expert knowledge point of 
view) over the history-matching period. Ideally, reasonable behaviour will then 
continue into the future. 
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4. HISTORY-MATCHING 
4.1 Strategy 
Exploration of water supply security requires that the Biggenden model be populated with a 
suite of random parameter fields, and then run into the future using a suite of random 
realisations of rainfall and potential evaporation. All of these random parameter fields must be 
reasonable from an expert knowledge point of view. At the same time, they must promulgate 
a good fit between model outputs and the “hard data” component of the history-matching 
dataset, whilst simultaneously respecting its “soft data” component. 

Generation of random parameter fields was accomplished in two steps. First the model was 
“calibrated” (see below). The parameter field that emerged from this process, together with 
the outcomes of ancillary linear uncertainty analysis, were then used to implement the process 
of generating random, history-match-constrained parameter fields. The outcome of the entire 
process was a set of 250 random parameter fields that all satisfy hard and soft data 
constraints.  

4.2 The History-Matching Period 
History matching, and concomitant parameter adjustment, was implemented over the period 
1st January 2003 to 31st December 2017. The transient simulation which spans this period is 
preceded by a steady state simulation. The same hydraulic conductivity field is employed for 
both of these simulations (specific yield is only required for transient simulation).  

A steady state simulation does not require direct use of LUMPREM model instances for 
provision of recharge, EVT rates and boundary heads. Instead, for any set of parameters 
employed by the transient component of the model, LUMPREM-derived inputs were averaged 
over the transient period for use in the partnered steady-state simulation. 

4.3 The Measurement Objective Function 
4.3.1 General 
The term “measurement objective function” refers to the sum of squared weighted differences 
between field measurements and model outputs which correspond to them. The lower is the 
measurement objective function, the better is model-to-measurement fit. 

In contrast, the term “regularisation objective function” refers to discrepancies between 
parameters and/or relatively simple functions of parameters, and the preferred values (from 
an expert knowledge point of view) of these parameters and/or functions. When a model 
undergoes calibration, parameter uniqueness is achieved through minimizing the 
regularisation objective function subject to the measurement objective function achieving a 
user-specified value, this value being referred to as the “target measurement objective 
function”. If the measurement objective function cannot be reduced to this target, then it is 
lowered as far as it can be lowered. 

As has already been discussed, the dataset used for history-matching of the Biggenden 
groundwater model can be partitioned into “hard” and “soft” components. The first is comprised 
of quantities that were actually measured. The second is comprised of quantities that are 
considered to be desirable features of simulated groundwater behaviour from an expert 
knowledge point of view. Attainment of a good fit with hard data is essential to useful 
deployment of the Biggenden model. Predictions required of the model pertain to the same 
production well as that in which many historical water level measurements were made. Hence 
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it is likely that attainment of a good fit with historical hard data will do much to reduce the 
uncertainties of these predictions. (To use PEST jargon, predictions of management interest 
have high sensitivities to combinations of parameters that occupy the calibration solution 
space.) 

Attaining a good fit with “soft data” serves another purpose. Although conditions in the future 
will not be radically different from those that prevailed in the past, they will nevertheless be 
somewhat different. By informing the history-matching process that estimated parameters 
must support reproduction of not only measured data, but of sensible system historical 
behaviour, two desirable outcomes of the history-matching process are achieved. The first of 
these outcomes is that the posterior uncertainties of model parameters are reduced through 
provision of this extra information; the uncertainties of decision-critical model predictions may 
thereby also be reduced. The second of these outcomes is a reduced probability of aberrant 
model behaviour under future simulated drought conditions. 

Components of the measurement objective function are now described. This objective function 
was employed on all occasions on which history matching was undertaken. On the first 
occasion of history matching, PEST_HP was employed to achieve a parameter field of 
minimized error variance; this is the calibrated parameter field. On the second occasion of 
history-matching, PESTPP-IES was employed to attain an ensemble of stochastic parameter 
fields which respect constraints imposed by both hard and soft data; these constitute samples 
of the posterior parameter probability distribution. 

4.3.2 Hard Data 
It is the task of the Biggenden groundwater model to predict future water levels and extraction 
rates in two pumped bores, namely RN156052 and RN155332. Water level measurements 
from the former bore are available over the history-matching period. This is the bore from 
which most water is extracted. Historically, water level measurements were taken both when 
the pump was operating, and when it was not operating. There is a consistent difference of 
5m between these two levels. (This is consistent with cell-to-well head corrections calculated 
using representative local hydraulic conductivities; see Peaceman, 1978.) In the Biggenden 
groundwater model, pumping is continous. Over the history-matching period, model-
calculated heads in the cell in which the pumping well is situated are matched to “pumps-off” 
water levels measured in RN156052.  

No historical water level measurements are available for RN155332. Nevertheless history-
matching constraints arising from soft data were applied to historical pumping rates from this 
well; see below. (Recall that the Biggenden model is configured to automatically reduce 
extraction rates if borehole water levels fall below use-specified thresholds.) 

Over the history-matching period, model-calculated heads for monitoring bores RN13600186, 
RN13600187 and RN13600296 were matched to their observed counterparts. These bores 
are relatively close to the two pumped bores. These are the only observation bores within the 
model domain, except for those at its south-western boundary. Recall that a LUMPREM model 
was calibrated against water level variations in one of these boundary wells in order to 
populate all model alluvial boundaries with time-varying heads over both the calibration and 
predictive periods. 
The “hard data” component of the measurement objective function was supplemented with 
measurements of temporal head differences. For each of the above bores, the difference 
between the head measured at any particular time, and the first head measurement available 
in the bore, was taken. This was done for observations and for model-calculated counterparts 
to observations. Discrepancies between these observed and model-calculated differences 
comprised another component of the measurement objective function. Head differences are 
rich in information on storage and recharge parameters. By explicitly including these 
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differences in the measurement objective function, and by weighing this component of the 
objective function for visibility, it is ensured that that this information is transferred to model 
parameters. 

4.3.3 Soft Data 
The importance of “soft data” in guiding the history-matching process towards rejection of 
parameters that promote aberrant model behaviour has already been discussed. In a history-
matching process, soft data is often embodied in penalty functions. These contribute to the 
overall measurement objective function only if certain system behaviour thresholds are 
crossed. Penalty functions steer the history matching process away from hydrogeologically 
inconsistent parameter sets. 

As was previously noted, the Biggenden groundwater model automatically reduces extraction 
rates from pumped bores as borehole water levels approach pump intake levels. Biggenden 
model post-processors report the calculated pumping rate and compare it with the desired 
pumping rate. In order to prevent unrealistic derating of extraction during the history-matching 
period, a model-extracted pumping rate that is less than 90% of that which is sought over any 
one-month period is decreed to trigger a residual. This residual is the difference between 90% 
of the sought pumping rate and that calculated by the model. This residual is weighted and 
added to the measurement objective function to discourage estimation of parameter sets 
which prevent the model from matching observed extraction.  

Some of the water that enters the Biggenden groundwater model domain as recharge and 
inflow from lateral boundaries leaves the groundwater system as baseflow to Degilbo and 
Mungore Creeks. Degilbo Creek is gauged at a station that is installed 25 km downstream of 
the study area. If, during any month of the history-matching period, the average model-
calculated baseflow exceeds the minimum baseflow recorded for that month at the 
downstream gauging station, an objective function penalty is incurred. This penalty function 
codifies the assumption that the baseflow contribution to Degilbo Creek flow is likely to be 
considerably higher at the gauging station than in the immediate vicinity of Biggenden. 

MODFLOW 6 CHD boundary conditions line the northern and southern alluvial boundaries of 
the model domain. To promote an assumed northerly flow direction along the main alluvial 
trunk, a penalty is incurred if water leaves the domain of the Biggenden groundwater model 
through the southern CHD alluvial boundary, or if water enters the model domain through the 
northern CHD alluvial boundary. 

When rainfall is low, seepage of groundwater to the surface is low, and is experienced only at 
the lowest points in the landscape, these being occupied by creeks and gullies. Hence, if the 
model-calculated depth to the phreatic surface in any other part of the model domain is less 
than zero during an historical dry season, these negative depths comprised residuals that 
contribute to an objective function penalty. Conversely, during rainy periods, the depth to 
groundwater is not expected to exceed its largest recorded wet season value. Consequently, 
if the model-calculated depth to the phreatic surface was greater than 12m in any part of the 
model domain during an historical wet season, depths exceeding this threshold comprise 
residuals that contribute to an objective function penalty. The threshold of 12m corresponds 
to the deepest wet season water level recorded in any monitoring bore residing in the domain 
of the Biggenden model.  

4.3.4 Weighting 
Each of the above-described components of the measurement objective function was 
assigned to its own “observation group”. PEST_HP and PESTPP-IES report the contribution 
to the total objective function made by these different groups as the history-matching process 
progresses. Ideally, the history-matching process should commence with each of these 
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contributions visible in the overall objective function; this applies especially to objective 
function components pertaining to hard data. Rough equality of objective function 
contributions prevents dominance of the objective function by a single component, and 
consequential diminishment of the worth of information carried by other components. This 
strategy was adopted in history matching of the Biggenden model. 

This weight-balancing procedure can encounter difficulties when applied to penalty 
components of an objective function. Penalties can be small, or even zero, for parameter sets 
chosen by the user to commence a history-matching process. In the present case, weights 
applied to some penalty function components were initially guessed, with a view to adjusting 
them if this proved necessary. Little adjustment was required, however. 
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5 MODEL CALIBRATION 
5.1 What is Calibration? 
The word “calibration” should not be used interchangeably with “history matching”.  

Calibration implies parameter uniqueness. Obviously, there is insufficient data available for 
unique estimation of parameters assigned to the Biggenden groundwater model. It follows that 
there is insufficient data available for a unique determination of hydraulic properties within its 
domain, nor of the parameters which govern seasonal fluctuations of boundary heads, and 
hence the heads themselves. 

The name given to the process through which uniqueness is sought for an ill-posed inverse 
problem is “regularisation”. This can be implemented in a number of ways. One of these ways 
is to impose constraints on departures of estimated parameter fields from a default, user-
specified condition; this methodology is broadly referred to as “Tikhonov regularisation”. If 
regularisation constraints posit a preferred state of parameter homogeneity, then the 
parameter field that emerges from this process is that which exhibits the minimum 
heterogeneity that is required for model outputs to match field observations.  

A parameter field attained through regularised inversion must be seen for what it is. It makes 
no claim for correctness, only for minimized potential for incorrectness (i.e. minimized error 
variance). If the information content of a history-matching dataset is low, the potential for 
calibrated parameter field incorrectness may still be very high. The same applies to some 
predictions made by the calibrated model. 

In PEST’s implementation of Tikhonov regularisation, the inverse problem is reformulated as 
a constrained minimisation problem. A “regularisation objective function” is minimized. This 
objective function measures parameter departures from their preferred state. This 
minimisation problem should be formulated in such a way that departures from this state are 
more tolerable if they take place in ways that are geologically meaningful. The constraint 
imposed on the minimisation process is that a “measurement objective function” (a measure 
of model-to-measurement misfit) achieves a certain (presumably low) value. This value should 
be set in accordance with the level of measurement noise that is associated with field 
measurements, or with the level of “structural noise” that characterizes a model’s inability to 
reproduce field measurements.  

The Biggenden model was calibrated according to the above prescription. A good fit between 
field measurements and corresponding model outputs was attained. Following acquisition of 
a parameter field of minimized error variance, a further 250 history-match-constrained, 
heterogeneous parameter fields were obtained. Each of these parameter sets was designed 
to reflect the level of heterogeneity that may exist within the model domain. Collectively they 
were used to explore the range of predictive possibilities that are compatible with expert 
knowledge on the one hand, and the historical behaviour of the system on the other hand. 

5.2 So Why Calibrate? 
It is legitimate to question the need for procurement of a solution of minimized error variance 
to the inverse problem of model calibration, when the outcome of a modelling exercise such 
as this Biggenden example should be quantification of the uncertainties of decision-critical 
predictions rather than a single prediction of minimized error variance. An alternative to 
calibration is the use of history-matching methods that attempt to directly sample the posterior 
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parameter probability distribution. Ensemble methods such as that employed by PESTPP-IES 
can achieve this outcome at a comparatively small numerical cost. 

Model calibration can be expensive. It requires calculation of a Jacobian matrix (i.e. a 
sensitivity matrix). The filling of this Jacobian matrix requires that at least one model run be 
undertaken for each adjustable parameter. The Jacobian matrix must be re-filled during each 
iteration of the history-matching process. In contrast, ensemble methods require far fewer 
model runs per iteration - possibly only a few hundred - regardless of the number of adjustable 
parameters. (Note, however, that variants of ensemble methods can be used to “calibrate” a 
model using an approximate, rank-deficient Jacobian matrix. In some situations this may prove 
to be a viable alternative to conventional calibration. Rank-deficient matrices are those for 
which at least one row or column is a linear combination of other rows or columns.) 

The choice of whether posterior uncertainty analysis should be preceded by a calibration step 
is personal. However, in making this choice, the following should be taken into account. 

• Model construction usually takes place in stages. Concepts on which it rests often 
undergo considerable refinement during subsequent attempts at history-matching, 
especially if difficulties are encountered in fitting model outputs to field 
measurements, and/or if estimated parameter fields are unrealistic. Initial attempts at 
history-matching therefore comprise a lengthy process wherein hypotheses 
pertaining to concepts on which the current version of the model rests are tested and 
refined. It makes sense to test these concepts by seeking a single solution to an 
inverse problem that, by design, departs minimally from that which is considered to 
be “most realistic” from an expert knowledge point of view. If a good fit with the 
calibration dataset cannot be attained with a reasonable parameter field, this 
becomes readily apparent. 

• Experience demonstrates that an inversion process based on a full Jacobian matrix 
can often promulgate a better fit with a history-matching dataset than an inversion 
process based on a rank-deficient Jacobian matrix. For reasons already outlined, 
achievement of a good fit with hard data is an essential component of Biggenden 
groundwater modelling. 

• Experience has also demonstrated that the performance of PESTPP-IES in sampling 
the posterior parameter probability distribution can sometimes be more numerically 
efficient if this process begins with random parameter fields that sample a linear 
approximation to this distribution. Under these circumstances PESTPP-IES may 
require fewer iterations to achieve a good fit with field measurements than if initiated 
with samples of the prior parameter probability distribution. A linear approximation to 
the posterior parameter probability distribution can be calculated using the Jacobian 
matrix that emerges from calibration of the model. This strategy was adopted in the 
present example.  

5.3 Regularisation 
5.3.1 Regularisation in general 
Regularisation can be viewed in a number of ways. By definition, it is essential to attainment 
of parameter uniqueness. It can also be viewed as a set of penalties, mainly (but not always) 
applied to parameters. The greater the extent to which parameters depart from a preferred 
condition, the greater is the penalty. 

When calibrating a model using PEST, a fundamental difference between a regularisation 
penalty function and a penalty function which contributes to the measurement objective 
function is that PEST determines the weights that it applies to the former, but accepts user-
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specified weights for the latter. PEST ascribes values to regularisation weights that do not 
compromise its ability to fit hard data, but prevents it from over-fitting this data; the metric for 
over-fitting is the user-supplied target measurement objective function. Alternatively, if no such 
threshold is sought, so that the best fit possible with the measurement dataset is pursued, 
then PEST adjusts regularisation weights in such a way that this fit is attained with the most 
reasonable parameter set. Regularisation was implemented in the second of these ways when 
calibrating the Biggenden groundwater model. See PEST documentation for a more detailed 
description of its regularisation functionality. 

5.3.2 Regularisation Specifics 
For the five LUMPREM models that simulate recharge in different parts of the model domain, 
penalties were imposed on differences between values assigned to LUMPREM parameters of 
the same type ascribed to models operating in different zones. Hence the preferred parameter 
condition for LUMPREM recharge models was that of homogeneity across all land-use types. 
In addition to this, a penalty condition was decreed to arise if the average recharge calculated 
by any one of these five LUMPREM recharge models was less than 1%, or greater than 5%, 
of average rainfall. 

It is a requirement of PEST-based inversion that initial values be provided for all parameters. 
For pilot point parameters (recall that pilot points are used for parameterisation of Kh and Sy, 
as well as GHB and DRN conductances), regularisation penalties were incurred to the extent 
that parameters departed from their initial values. Initial/preferred values for parameters of 
each type are listed in Table 5.1.  

Parameter type Initial value 

Hydraulic conductivity 1 m/d 

Specific yield 1% 

GHB boundary conductance 1 m2/d 

DRN boundary conductance 1 m2/d 

Table 5.1 Initial values of pilot points parameters. 

Covariance matrices were used instead of weights for calculating components of the 
regularisation objective function pertaining to pilot point parameters. This encourages PEST 
to spatially distribute any heterogeneity that it must introduce to a parameter field in order for 
the model to fit a calibration dataset, rather than allow this heterogeneity to arise on a point-
by-point basis. The covariance matrix employed for regularisation of each of these parameter 
types was based on an anisotropic variogram whose range in its principle direction is able to 
vary in space with pilot point density. For all pertinent parameter types, the local range was 
set to about 4 times the average distance between pilot points. An anisotropy of 2.0 was used 
throughout the model domain, with the principle axis of anisotropy oriented roughly parallel to 
the local direction of the alluvial system. Construction of these covariance matrices was 
enabled using the PPCOV_SVA utility; this is a member of the PEST Groundwater Utility Suite. 
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5.4 Outcomes of the Calibration Process 
5.4.1 Performance of PEST_HP 
The Biggenden groundwater model takes around 6 minutes to run on a computer using an 
Intel Xeon 3.2GHz Octa-core processor (E5-1660 v4) with 128GB RAM. History-matching was 
undertaken using 36 nodes (1,376 CPU cores) of a Windows-based High Performance 
Computing (HPC) platform owned by the Queensland Department of Environment and 
Science (DES). 

The PEST_HP version of PEST was used for calibration of the Biggenden groundwater model. 
PEST_HP was allowed to run for 50 iterations. Initial and final measurement objective function 
components are listed in Table 5.2. The latter pertain to iteration 24. However objective 
functions were within 10% of these values after only 12 iterations. The number of model runs 
required for completion of 12 and 24 iterations was approximately 27,300 and 54,600 
respectively. PEST_HP employed three-point finite-difference derivatives to fill the Jacobian 
matrix; these are more accurate than derivatives calculated using forward differences.  

Objective function component Initial  Final 

Heads in pumping well 30,000 222.7 

Heads in observation wells 90,000 204.8 

All heads 120,000 427.5 

Temporal head differences in observation 
wells 

90,000 197.2 

De-rating of extraction 30,000 11.8 

Prevention of incorrect flow direction across 
boundaries 

60,000 0.0 

Sensibility of wet season heads 30,000 0.0 

Sensibility of dry season heads 0.0 0.3 

Deterrence of excessive baseflow 30,000 0.5 

Table 5.2 Measurement objective function components achieved by PEST_HP. 

The measurement objective functions listed in Table 5.2 are somewhat arbitrary. They are an 
outcome of the “weighting for visibility” strategy that was described above. However they are 
directly comparable with objective functions attained using the PESTPP-IES ensemble 
smoother; the latter are listed in Table 6.1. 

5.4.2 Heads Calculated by the Calibrated Model 
Figure 5.1 shows head measurements and their model-calculated counterparts for bore 
RN156052 (the pumped bore) and for the three nearby observation wells. (Borehole water 
levels in RN156052 that were measured while the pump was operating are omitted from Figure 
5.1d.) Figure 5.2 shows these same measured heads together with heads calculated by the 
model at the end of each of its stress periods. 
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Figure 5.1 Observed and modelled heads for (a) RN13600186 (top left), (b) RN13600187 (top right), (c) RN13600296 (bottom left) and (d) RN156052 (bottom right). Only 
modelled heads corresponding to field-measured heads are shown in these figures. 
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Figure 5.2 Observed and modelled heads for (a) RN13600186 (top left), (b) RN13600187 (top right), (c) RN13600296 (bottom left) and (d) RN156052 (bottom right). 
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Piezometric surfaces calculated by the model during a particularly wet period (1st February, 
2011) and during a particularly dry period (1st November, 2006) are shown in Figure 5.3 and 
Figure 5.4 respectively.  

 
Figure 5.3. Contours of model-calculated groundwater heads for 1st February, 2011. 
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Figure 5.4. Contours of model-calculated groundwater heads for 1st November, 2006. 
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Figure 5.5 depicts variation of GHB boundary heads with time at points about half way along 
the eastern and western boundaries of the model domain. Recall that these are calculated 
using different instances of the LUMPREM model. 

 

 

 
Figure 5.5. Heads at points about half way along the eastern (top) and western (bottom) boundaries of the 
Biggenden groundwater model domain. 
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5.4.3 Parameter Fields 
The calibrated Kh and Sy parameter fields are shown in Figures 5.6 and 5.7. 

 

 
Figure 5.6. Calibrated hydraulic conductivity (i.e. Kh) parameter field. 
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Figure 5.7. Calibrated specific yield (i.e. Sy) parameter field.  

It is apparent from Figures 5.6 and 5.7 that, in accordance with regularisation constraints, most 
heterogeneity is introduced to the model domain in the vincinity of the pumping and 
observation wells. This is required in order to attain a good fit between model outcomes and 
the hard component of the calibration dataset. The patterns that appear in Figures 5.6 and 5.7 
are likely to be only loosely reflective of the actual patterns of hydraulic properties that prevail 
in the Degilbo Creek alluvial system. The relationships between parameters that are estimated 
through regularised solution of an ill-posed inverse problem and the actual hydraulic properties 
of a system are complex; for linear systems they are revealed by the rows of the so-called 
resolution matrix (Menke, 2018; Aster et al 2013).   
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6. SAMPLING THE POSTERIOR 
6.1 General 
As has already been discussed, the desired outcome of the Biggenden modelling process is 
a suite of “realistic” parameter fields that all allow the model to replicate historical hard data. 
Water supply security under any given scenario of future rainfall can then be tested using all 
of these parameter fields. 

The PESTPP-IES iterative ensemble smoother is described by White (2018). The numerical 
algorithm on which it is based is described by Chen and Oliver (2013). Ideally, an ensemble 
smoother commences the history-matching process with a suite of parameter fields which 
comprise samples of the prior parameter probability distribution. Through a succession of 
iterations of the ensemble inversion process, these parameter fields are adjusted until they 
allow the model to replicate field observations; in doing so, they thereby constitute samples of 
the posterior parameter probability distribution. Adjustments to parameter fields are calculated 
using a rank-deficient Jacobian matrix. This is formed from covariances between individual 
parameters and individual model outcomes. The number of model runs per iteration that is 
required to fill the rank-deficient Jacobian matrix is equal to the number of parameter 
realisations that comprise the ensemble. Ideally, this number should be no lower than the 
dimensionality of the solution space that characterizes the inverse problem. The ensemble 
adjustment process gains its efficiency from the fact that the number of runs per iteration need 
be no higher than this, regardless of the number of parameters requiring adjustment. In 
history-matching of the Biggenden model, PESTPP-IES employed 500 realisations; those with 
the lowest 250 measurement objective functions were used to make model predictions.  

We undertook a number of PESTPP-IES runs. Based on this experience, we concluded that 
its performance in attaining a good fit with the Biggenden model history-matching dataset in a 
reasonably small number of iterations is superior if its initial random parameter fields are 
centred on a parameter field that already achieves this fit. We found that its performance is 
further enhanced if initial random parameter fields are sampled from a linear approximation to 
the posterior parameter probability distribution calculated from the Jacobian matrix computed 
by PEST_HP during the previous calibration process. We suspect that part of the reason why 
its performance is so susceptible to improvement in this manner lies in the high degree of 
nonlinearity introduced to the inverse problem through the use of penalty functions. Penalties 
are sensitive to parameters over only part of their ranges. 

At the time of writing, the use of ensembles is relatively new to the groundwater industry. We 
assist the reader who is unfamiliar with this technology, but who may be interested in using 
the methods described herein in his/her own modelling work, by providing a few 
implementation details. 

6.2 Some Implementation Details 
6.2.1 Generation of Initial Parameter Fields 
Initial random parameter fields were generated using the PEST RANDPAR3 utility. This 
requires a covariance matrix to specify parameter uncertainty and correlation. This covariance 
matrix was generated using the PEST PREDUNC7 utility. PREDUNC7 calculates a linear 
approximation to a posterior parameter covariance matrix based on a user-supplied prior 
covariance matrix and a matching Jacobian matrix. 
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The prior covariance matrix employed by PREDUNC7 was calculated using the PEST 
PPCOV_SVA utility. For Kh, Sy and boundary conductance parameters, this is the same 
covariance matrix as that which was used for regularisation. Prior standard deviations ascribed 
to the log (to base 10) of these parameters were all 0.5; the square of this standard deviation 
(i.e. the variance) comprises the diagonal elements of the covariance matrix. (Note that 
standard deviations are of no consequence when a matrix is used for regularisation; they are 
only of consequence when a covariance matrix is used for uncertainty analysis.) 

All other parameters employed by the Biggenden model (these predominantly pertaining to 
instances of the LUMPREM model) were considered to be independent of each other. Prior 
standard deviations were assigned to them in accordance with the properties that they 
represent.  

6.2.2 Measurement Noise 
The same observation weights were employed in the PESTPP-IES history-matching process 
as those which were employed by PEST_HP. As is discussed above, weighting was based 
on visibility of objective function components in the overall objective function. 

PESTPP-IES allows a user to add realisations of measurement noise to observations 
comprising the history-matching dataset. These realisations were added only to hard data, 
namely heads measured in boreholes. The standard deviation chosen for head measurement 
noise was back-calculated from the fit attained between observed heads and their simulated 
counterparts by PEST_HP. 

6.3 Outcomes of PESTPP-IES History Matching 
6.3.1 Performance 
Execution of PESTPP-IES continued for 21 iterations, this requiring a total of approximately 
14,700 model runs; however parameter fields pertaining to iteration 19 were employed for 
future model runs, as objective function statistics deteriorated slightly during ensuing 
iterations. Around 13,400 model runs were required for completion of iteration 19. 

6.3.2 Objective Functions 
Objective function statistics for iteration 19 are presented in Table 6.1. These are directly 
comparable with those achieved using PEST_HP; the latter are listed in Table 5.2. 
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Objective function component Average  Minimum Maximum  Standard 
deviation 

Heads in pumping well 210.0 184.3 349.5 16.5 

Heads in observation wells 202.3 175.3 397.9 21.9 

 All heads 412.3 374.0 701.0 35.2 

Temporal head differences in 
observation wells 

201.8 174.6 877.3 36.1 

De-rating of extraction 27.3 7.4 65.0 9.2 

Prevention of incorrect flow 
direction across boundaries 

5.1 0 184.9 13.4 

Sensibility of wet season heads 0 0 2.6 0.1 

Sensibility of dry season heads 1.7 0 28.0 3.2 

Deterrence of excessive baseflow 3.0 0 39.8 5.2 

Table 6.1 Measurement objective function components achieved by PESTPP-IES. 

Of the 500 realisations that were adjusted by PESTPP-IES, the best 250 were selected for 
future model use. For these parameter fields the heads component of the objective function 
varies between 374.0 and 427.6, while the head difference component of the objective function 
varies between 174.6 and 223.1. 

6.3.3 Heads 
Figure 6.1 is comparable with Figure 5.1. Figure 6.1 compares measured heads in the pumped 
bore and three nearby observation bores with their model-calculated counterparts for the best 
250 realisations calculated by the PESTPP-IES ensemble. In these figures, measured heads 
are linked by straight lines. Figure 6.2 shows measured heads in these same wells. However 
modelled heads are plotted at the end of every simulation stress period. This figure is directly 
comparable with Figure 5.2. 

Wet season (1st February, 2011) and dry season (1st November, 2006) piezometric surfaces 
throughout the model domain, calculated using four randomly selected realisations from the 
best 250 realisations achieved by PESTPP-IES are shown in Figures 6.3 and 6.4. These 
figures are directly comparable with Figures 5.3 and 5.4. 
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Figure 6.1. Comparison of observed and modelled heads for (a) RN13600186 (top left), (b) RN13600187 (top right), (c) RN13600296 (bottom left) and (d) RN156052 
(bottom right) for the best 250 realisations of the ensemble. Only modelled heads corresponding to field-measured heads are shown. 



40 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2. Comparison of observed and modelled heads for (a) RN13600186 (top left), (b) RN13600187 (top right), (c) RN13600296 (bottom left) and (d) RN156052 
(bottom right) for the best 250 realisations of the ensemble. The envelope of model heads calculated at the end of every MODFLOW 6 stress period is depicted. 
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Figure 6.3. Contours of model-calculated groundwater heads for 1st February, 2011 for stochastic 
realisations 6 (top-left), 173 (top-right), 199 (bottom left) and 213 (bottom right). 
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Figure 6.4. Contours of model-calculated groundwater heads for 1st November, 2006 for stochastic 
realisations 6 (top-left), 173 (top-right), 199 (bottom left) and 213 (bottom right).   
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6.3.4 Parameter Fields 
The four random hydraulic conductivity fields that are used to calculate the piezometric 
surfaces appearing in Figures 6.3 and 6.4 are shown in Figure 6.5; corresponding specific 
yield parameter fields are shown in Figure 6.6. These figures are directly comparable with 
Figures 5.5 and 5.6.   

Figure 6.7 shows the spatial distribution of the posterior standard deviation of the best 250 
log(Kh) and log(Sy) parameter fields throughout the model domain. It is apparent that the 
uncertainties of these parameter fields are reduced only in the area where they are 
constrained by measurements of borehole water levels. 

Figures 6.8 and 6.9 depict LUMPREM-calculated boundary heads for the best 250 parameter 
fields at points about half way along the eastern and western boundaries of the model domain. 
These are directly comparable with Figures 5.7 and 5.8. 
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Figure 6.5. Hydraulic conductivity (i.e. Kh) parameter fields for stochastic realisations 6 (top-left), 173 (top-
right), 199 (bottom left) and 213 (bottom right).  
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Figure 6.6. Specific yield (i.e. Sy) parameter fields for stochastic realisations 6 (top-left), 173 (top-right), 
199 (bottom left) and 213 (bottom right).   
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Figure 6.7. Spatial distribution of the posterior standard deviation of the best 250 parameter fields of 
log(Kh) (left) and log(Sy) (right).   

 
Figures 6.8. LUMPREM-calculated heads for the best 250 parameter fields at a point about half way along 
the eastern model boundary. 
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Figures 6.9. LUMPREM-calculated heads for the best 250 parameter fields at a point about half way along 
the western model boundary. 
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7. WATER SUPPLY SECURITY ASSESSMENT 
In this chapter we illustrate deployment of the model whose construction was described in 
previous chapters of this report. In doing this, we examine the exceedance probability of a 
quantity which we refer to as “extraction ratio”. The extraction ratio is 1.0 whenever the water 
requirements of Biggenden township are met. It drops below 1.0 when extraction rates are 
reduced in order to prevent water levels in pumping wells from falling below certain thresholds. 
As was explained in previous chapters, these thresholds can be set in accordance with 
management-imposed water restrictions. However, regardless of these settings, the model 
will not allow the water level in a pumped bore to fall below the intake level of the pump. For 
the deployment example that we describe in the present chapter, it is assumed that no water 
use restrictions are imposed; hence extraction is reduced only in accordance with the need to 
safeguard borehole pumps. 

In order to calculate exceedance probabilities for various extraction ratios, the model is run for 
125 years into the future. As was previously discussed, uncertainties in climate are 
accommodated through the use of 100 stochastic realisations of future daily rainfall and 
evaporation. Uncertainties in system properties and behaviour are accommodated through 
the use of 250 realisations of model parameters calculated by PESTPP-IES.  

Three graphs are presented herein.  

Figure 7.1 shows extraction ratio exceedance probability as it depends only on parameter 
uncertainty. This was calculated by running the model using 250 history-match-constrained 
parameter fields computed by PESTPP-IES, together with a single realisation of future 
weather.  

Four plots are provided in this figure. Two of these pertain to borehole RN155332, while two 
pertain to both of the bores from which Biggenden extracts its supply, namely RN155332 and 
RN156052. Recall that 30% of Biggenden’s water needs are provided by the former well while 
70% of its needs are provided by the latter well. Extraction ratio exceedance probabilities are 
presented for two levels of demand, namely 80 Ml/year and 125 Ml/year. 

Figure 7.2 shows extraction ratio exceedance probability as it depends only on the uncertainty 
of future weather. This was computed by running the model 100 times using different 
realisations of future rainfall and evapotranspiration. The same set of model parameters was 
used for all of these runs, namely those derived by PEST_HP when it calibrated the model.  

Figure 7.3 combines these two sources of uncertainty. It plots the collective outcomes of 250 
model runs. Each of these runs is based on a random selection of one of the 100 realisations 
of future weather together with a random selection of one of the 250 realisations of model 
parameters. 

A comparison of these figures reveals that, for the Biggenden model, uncertainty in future 
weather contributes more to the uncertainty of water security than uncertainties in properties 
and behaviour of the groundwater system from which Biggenden draws its water supply. This 
may have a bearing on how future water supply security assessments are undertaken. 

The authors of this report admit to being a little surprised by this conclusion. It indicates that, 
despite large uncertainties associated with system properties and behaviour, hard and soft 
data comprising the history-matching dataset contain information that is directly pertinent to 
predictions of interest. The modelling process was able to effectively assimilate this 
information.
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Figure 7.1. Extraction ratio exceedance probability based on parameter uncertainty for RN155332 at 80ML/yr demand (top left), total bore field at 80ML/yr demand 
(top right), RN155332 at 125ML/yr demand (bottom left) and total bore field at 125ML/yr demand (bottom right).
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Figure 7.2. Extraction ratio exceedance probability based on the uncertainty of future weather for RN155332 at 80ML/yr demand (top left), total bore field at 80ML/yr 
demand (top right), RN155332 at 125ML/yr demand (bottom left) and total bore field at 125ML/yr demand (bottom right).
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Figure 7.3. Extraction ratio exceedance probability based on both parameter and weather uncertainty for RN155332 at 80ML/yr demand (top left), total bore field at 
80ML/yr demand (top right), RN155332 at 125ML/yr demand (bottom left) and total bore field at 125ML/yr demand (bottom right).
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8. DISCUSSION 
This GMDSI worked example report describes a model that was built to assess water supply security 
for a small town in south eastern Queensland.  

Like any groundwater model, the Biggenden groundwater model has a number of features that make 
it unique. Data on which its construction is based, and through which its parameters can be inferred, 
are scarce. Nevertheless, the model respects these data; in doing so, it assimilates the information 
that they contain. This applies particularly to water level measurements in a small number of bores, 
including an extraction bore. Maintenance of pumping from extraction bores during dry periods must 
be assessed by the model.  

If the calibration dataset were large, and if it spanned a long enough time interval to ensure that any 
weather condition that prevails in the future has already been experienced in the past, then 
assessment of future water supply reliability would not be a difficult undertaking. A simple model, or 
even a machine learning algorithm, could be trained to calculate borehole water levels from weather 
sequences. This same algorithm could then be used in conjunction with stochastic sequences of 
future weather to predict whether borehole water levels are likely to fall below thresholds that restrict 
water delivery.  

In the present study, however, the calibration dataset is relatively small, and spans a relatively short 
period of time. Predictions required of the model constitute the response of the groundwater system 
to weather conditions that are not encompassed by this dataset. This requires that the model which 
makes these predictions has a physical basis. This allows information from other sources to inform 
its parameters, notwithstanding the fact that this information is qualitative. It includes knowledge of 
(a) how the Deglibo Creek groundwater system behaves, and (b) materials which host this system. 
While this information is insufficient to allow definitive estimation of system hydraulic properties, nor 
to expose the way in which the local alluvial system interacts with the wider groundwater system, it 
does reduce the range of parameter values that can be used to populate the model. In doing so, it 
lessens the chances of employing a parameter field that promulgates aberrant behaviour of the model 
when it encounters possible future weather conditions with which it is unfamiliar. 

In assessing water supply security for the township of Biggenden, this worked example has 
demonstrated how decision-support modelling can express future uncertainties at the same time as 
it assimilates data whose information content can reduce these uncertainties. A highly-parameterized 
approach to model construction and history-matching is essential to the achievement of this outcome. 
It allows free expression of uncertainty at the same time as it provides flexible receptacles for 
information that resides in hard and soft datasets. 

Other facets of model construction, parameterisation and history-matching that have been 
demonstrated through construction and deployment of the Biggenden groundwater model include the 
following. 

• The LUMPREM recharge model can be used to calculate time series of transient recharge 
and residual evapotranspiration for use by a groundwater model. It can also be used to 
calculate time series of boundary heads. 

• The inclusion of penalty functions in a history-matching dataset can improve parameter 
reasonableness, and thereby enhance the performance of a model when making predictions 
of future system behaviour. 

• The PESTPP-IES ensemble smoother provides the means to rapidly sample the posterior 
probability distribution of model parameters. On some occasions, its performance can be 
enhanced if its use is preceded by model calibration. Parameter values, and estimates of 
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posterior uncertainty that are forthcoming from a calibration process, can provide optimal 
starting realisations for the ensemble inversion process. However the cost (in terms of model 
runs) of calculating a full rank Jacobian matrix can be high. 
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