
A whirlwind tour of
PEST++ (v5) and pyEMU (v1)

Jeremy White and Mike Fienen

Thanks to GMDSI!

https://gmdsi.org/

Thanks to contributors!
● PEST++

○ Dave Welter, John Doherty, Randy Hunt, Mike Fienen, Wes Kitlasten, Matt Knowling, Mike
Towes, Ayman Alzraiee, Zak Stanko

● pyEMU
○ Mike Fienen, Wes Kitlasten, Matt Knowling, Brioch Hemmings, Ayman Alzraiee, Otis Rea

Always looking for contributors!

Outline
1. PEST++ overview
2. pyEMU overview
3. PEST++ worked example
4. pyEMU worked example
5. Looking forward

● For decision support, quantifying uncertainty
(UQ) and reducing uncertainty thru data
assimilation (DA) is fundamental

● This means we need UQ and DA tools that work
with a range of models!

● See previous GMDSI webinars for more
theory and concepts related to this topic!

A model

PEST(++)

Shmueli G. (2010) To explain or to predict?. Statistical science

Why PEST and PEST++?

PEST++
Design Philosophy

● Compliment the capabilities of PEST
○ Automate/combining workflows
○ New/different algorithms

● Focus on uncertainty and risk

PEST++
Design Philosophy

● C++11
● Statically compiled - “stand alone”
● PC, linux, mac
● Serial and parallel run mgr in all tools
● Can be compiled/debugged/profiled with

FREE visual studio and MSVC

PEST++
Overview of (current) capabilities

● Global Sensitivity Analyses
○ Diagnostics and “plumbing problems”

● Data Assimilation and Uncertainty Analyses
○ Bayesian parameter conditioning

● Management Optimization Under Uncertainty
○ Risk-based optimal resource management

● Generic parallel run management
○ Design of experiments, emulator training, etc

PEST++
Codes, documentation and support

● https://github.com/usgs/pestpp
○ Precompiled binaries
○ source + VS solution + make/cmake
○ Users manual
○ GH “issues” for support

■ Feature requests
■ Bug reports
■ General complaining

● PEST++ V5 USGS report
○ “in press”

https://github.com/usgs/pestpp

issues

Users manual
(thanks J Doh!)

Source code and
VS solution

https://github.com/usgs/pestpp

Pre-compiled
binaries
(PC and linux)

PEST++
Run management

● All pestpp-xxx tools have these!
● Serial run mgr

○ One run at a time
○ >>>pestpp-xxx my.pst

● Parallel run mgr
○ Master-worker concept
○ tcp/ip socket programming
○ Master: >>>pestpp-xxx my.pst /h :4004
○ Worker: >>>pestpp-xxx my.pst /h 111.222.333:4004
○ Multithreaded workers

■ Comms during forward run
■ Exception handling

PEST++
Using PEST(_HP) vs PEST++

PEST(_HP)

● Control file
● Template files
● Instruction files
● Jacobian files
● Uncertainty files
● etc
● >>>pest_hp my.pst

PEST++

● Control file
● Template files
● Instruction files
● Jacobian files
● Uncertainty files
● etc
● >>>pestpp_xxx my.pst

PEST++

PEST

● Control file
● Template files
● Instruction files
● jacobian files
● Uncertainty files
● >>>pest_hp my.pst

PEST++

● Control file
● Template files
● Instruction files
● jacobian files
● Uncertainty files
● >>>pestpp_xxx my.pst

If your model is setup for PEST(_HP),

your model is also setup for PEST++

Using PEST(_HP) vs PEST++

PEST++
Version 5: PURELY OPTIONAL variations from PEST(_HP)

● “++” control file args to modify internal defaults
○ PEST(_HP) ignores these
○ See user’s manual!

● Name lengths
○ 200-char parameter and observation name lengths
○ Automatic handling in PEST++

● Enhanced (“version 2”) control file

Version 2 control file
● Allows a wider range of algorithms
● Keyword-value pairs
● Defaults for all algorithmic variables
● External CSV files
● See user’s manual for specifications

Control file with 2M pars and 6M obs

pyEMU

● https://github.com/pypest/pyemu
● Python interface/wrapper for PEST and PEST++
● “All things PEST and PEST++”
● programmatic PEST(++) setup and processing

White and others (2016). A python framework for environmental model uncertainty analysis

https://github.com/jtwhite79/pyemu

pyEMU
Why pyEMU

● PEST (and the PEST utilities) and PEST++ are complex tools
○ Many opportunities for hardship!

● Just like the forward model, small “changes” to inputs can cause large
changes in outputs

● pyEMU can “automate” the implementation of PEST and PEST++ analyses
○ Decreased cognitive load
○ Increased efficiency
○ Reproducibility

pyEMU + PEST(++)
Workflow automation - efficiency and reproducibility

● Combining the efficiency of ensemble methods with the automation in pyEMU
● No painful tradeoffs between number of parameters and computation
● Documenting decisions about models all through the process
● Much less despair for “redos”
● Minimum Viable Product

pyEMU - with Jupyter Notebooks

pyEMU - with Jupyter Notebooks

pyEMU
Design philosophy

● “This should be easier”
○ mimic the Pandas style

● OOP, yeah you know me!
● Inclusive and cooperative development

○ A trick to convince users to help!

pyEMU
Overview of capabilities

● “Labeled” linear algebra
○ Less opportunities for hardship!

● Heaps of FOSM
○ PREDUNC PREDVAR, PNULPAR, etc
○ Dataworth

● Interacting with PEST Control Files
○ Using Pandas.Dataframe

● Ensembles
○ parameters, observations (noise)
○ Null-space projection
○ Bayes-linear Monte Carlo
○ Based on Pandas.Dataframe

pyEMU
Overview of capabilities

● I/O for all PEST-style files
○ pst, par, res, jcb/jco, mat, vec, unc, etc

● Pilot points and geostats
● Prior covariance matrix and Prior ensemble construction
● Plotting
● Programmatic interface construction

pyEMU
PstFrom: overview

● Brioch Hemmings (GNS Science)
● Programmatic construction of high-dimensional PEST(++) interface

○ Full-meal deal!
● Array-style (2-D) and list-style (tabular) input and output files
● Multiplier parameters

○ Broadcasting across layers and/or time steps
● Nested-spatial and temporal scales of parameters

○ Grid-scale, pilot points, zones, constants
● Geostatistical Prior cov matrix and/or ensembles

pyEMU
PstFrom: multiscale parameterization

● Preserve existing model inputs as a “full-dimensional” Prior mean
● Estimate “spread” around the mean
● Partition uncertainty according to scale
● Some help in identifying parameter compensation

White and others (2020). Towards reproducible environmental
modeling for decision support; A worked example

pyEMU
PstFrom: prior covariance matrix and ensemble generation

● Using minimal spatiotemporal information, construct geostatistical Prior
quantities

● Assumes correlation only within parameter groups
● Currently unconditioned realizations only*

○ Spectral simulation

PEST++ workflow demonstration

Follows exactly from the PEST++ V5 USGS report!

(that’s still in press…)

The (synthetic) model
Freyberg history and context

● Freyberg (1988)
● Hunt and others (2019)
● MODFLOW-6
● 3 layers X 40 rows X 20 cols
● 25 stress periods

○ 1 SS
○ 24 monthly transient

● SFR, WEL, RCH, GHB

Python-less Example Workflow
Following (exactly) the PEST++ Version 5 Report

1. PESTPP-SEN: diagnostics/error checking
2. PESTPP-GLM/PESTPP-IES: uncertainty and data assimilation
3. PESTPP-OPT: risk-based optimal management solutions

Python-less Example
The PEST(++) interface

● 8,175 parameters
○ HK, VK, SS, SY, WEL, RCH, SFR,

GHB
● Historic Period

○ First 12 transient periods
○ GW levels at gw_1 and gw_2
○ SW flow at sw_1

● Forecast Period
○ Last 12 transient periods

Python-less Example
Forecasts

● Tailwater sw-gw exchange at end
of historic period
○ solution space

● Headwater sw-gw exchange at the
end of the forecast period
○ null space

● Water level at gw_3 at the end of
the forecast period
○ solution/null space

Very Important Point

The quantities of interest (e.g. the forecasts) are part of the PEST interface
so we can track their value(s) throughout the following analyses.

The “truth”
● From 300 realizations…

○ pyEMU/PEST utils
● 95th percentile tailwater forecast
● A hard forecast to hit!

○ Extreme first moment
○ Small second moment

● Use outputs from this model
○ Historic observations (DA)

■ gw_1, gw_2, and sw_1
○ Forecast “truths”

PESTPP-SEN: overview
● Morris (and Sobol) global sensitivity analysis
● Morris: “One at a time” method

○ Samples sensitivities across parameter space
● Yields mean and standard deviation of parameter sens to obs in ctl file
● “It just works”: by default, runs = 4 X (num par + base run)

Likhachev, D. V. Parametric sensitivity analysis as an essential ingredient of spectroscopic ellipsometry data modeling: An application of the
Morris screening method."

PESTPP-SEN: setup

● ++tie_by_group(true) - drastically
reduce the number of “adjustable”
parameters from 8,175 to 12

● 52 model runs

PESTPP-SEN: results

PESTPP-SEN: results

PESTPP-SEN: results

PESTPP-SEN: results

PESTPP-GLM: overview
● The code formerly known as “pest++”

○ Regularized Gauss-Levenburg-Marquardt
○ Automated “super parameters”/“SVD-Assist”

● Focus on uncertainty
○ Automated posterior FOSM estimation each iteration

■ PREDUNC1 workflow
■ “For free” - no additional runs

○ Automated bayes-linear (aka FOSM-based, linear-assisted) Monte Carlo
■ PREDUNC7 + RANDPAR workflow
■ Draw and run realizations from the posterior covariance matrix

PESTPP-GLM: setup
● Tied spatially-distributed parameters into “blocks” or

zones of 6 X 6 cells
○ Not ideal compared to pilot points
○ Still express spatial heterogeneity
○ Reduced number of parameters from 8K to 330

● Automated SVD-Assist
○ ++n_iter_base(-1)
○ ++n_iter_super(3)

● ++glm_num_reals(200)
● 682 model runs

○ 331 to fill the full parameter jco
○ 151 for super parameter solution process
○ 200 for posterior Monte Carlo

● Red = observed
● Blue = posterior

● Red = observed
● Blue = posterior BORING!!!

● Red = observed
● Grey = prior
● Blue = posterior

● “Best fit” parameter vector
● Blocky parameterization
● “Minimum error variance” solution

○ Previous GMDSI webinars
● Regularized = little variability

● A posterior realization
○ Drawn from the bayes-linear posterior

covariance matrix
● Highly variable
● Consistent with Prior
● Reproduces historic observations

PESTPP-IES: overview
● See previous GMDSI webinar on

ensemble methods
● Iterative, localized ensemble

smoother
● Focus on uncertainty

○ “ensemble”
● Moving on....

White (2018). A model-independent iterative ensemble smoother for history matching and uncertainty quantification in very high dimensions.

PSETPP-IES: setup
● Using the full complement of 8,175 parameters
● ++ies_parameter_ensemble(ies_prior_en.jcb)

○ pyEMU/PEST utilities
● ++ies_localizer(temporal_loc.jcb)

○ Eliminate spurious backwards-in-time correlations
● ++ies_autoadaloc(true)
● 378 total model runs

● Red = observed
● Grey = prior
● Blue = posterior

● “Base” parameter realization
● “Minimum error variance”-ish
● Regularized-ish

○ Reasonable variability
● Consistent with the Prior

● A posterior realization
● Highly variable
● Consistent with Prior
● Reproduces historic observations

Now What?
● Run some scenarios and monitor “outputs of interest” (e.g. forecasts)
● Hope results are acceptable

○ Modify as needed
● Finish line

Now What?
● Run some scenarios and monitor “outputs of interest” (e.g. forecasts)
● Hope results are acceptable

○ Modify as needed
● Finish line

Critical thinking:

“Acceptable” = Simulated forecast value is acceptable to decision makers

“Acceptable” = avoid bad outcomes

“Acceptable” = feasible solution

“Modify as needed” = seeking feasible solutions

Mgmt opt under uncertainty
● Acceptable scenarios are feasible solutions
● Usually suboptimal

○ there is a “better” (optimal) way to manage
● mgmt optimization formalizes the scenario-testing process

○ Make/save $ while ensuring bad things don’t happen

● Can frame results in $ and risk (uncertainty continued…)

UQ/DA: terminology vs Mgmt Optimization
● Parameters
● (historic) observations
● forecast/prediction
● Objective function
● Prior information
● Jacobian matrix

● Decision variables
● ?
● Model-based constraints
● Objective function
● Prior information constraints
● Response matrix

Chance constraints: Theory
● We can use the same FOSM trickery to

estimate uncertainty in model-based
constraints

● concept of “risk” to “shift” the model-
based constraints along the implied
gaussian distribution

Wagner and Gorelick (1987). Optimal groundwater quality management under parameter uncertainty.

prior and posterior
forecast variance

Chance constraints: Theory

Chance constraints: Theory

● Use ensembles to represent
model-based constraint
uncertainty

● “Stack-based” optimization
● Less assumptions

○ “non-parametric”

Bayer, and others. 2010. Optimization of high‐reliability hydrological design problems by robust automatic sampling of critical model realizations.

PESTPP-OPT: overview
● Sequential linear programming with chance constraints
● “Mildly” nonlinear relations
● Parallel run mgmt for filling response matrix
● FOSM and stack chance constraints

White and others (2018). A tool for efficient, model-independent management optimization under uncertainty

PESTPP-OPT: setup
● setup wel flux parameters as decision variables

○ 6 wels X 24 stress periods = 144 wel flux decision variables
● add prior information equations for minimum required

wel flux
○ At least 750 cfd
○ Maintain water supply (demand-side)

● Identify simulated sw-gw exchange as constraints
○ Maintain eco flows (supply-side)
○ At least 250 cfd for headwater and tailwater
○ Uncertain! So chance constraints

PESTPP-OPT: setup
● 3 PESTPP-OPT runs
● Risk neutral
● Risk-averse with FOSM-based chance constraints

○ Using only 25 stress-period recharge parameters
● Risk-averse with stack-based chance constraints

○ posterior PESTPP-IES parameter ensemble

PESTPP-OPT: setup
● ++opt_direction(max)
● ++opt_risk(0.95)
● ++opt_par_stack(par_stack.csv)
● 147 total model runs for risk neutral
● 172 total model runs for FOSM-based risk averse
● 197 total model runs for stack-based risk averse

PESTPP-OPT: results

PESTPP-OPT: results

Python-full Example Workflow
https://github.com/pypest/pyemu_pestpp_workflow

● Currently includes jupyter notebooks demonstrating
○ Programmatically setup a single “comprehensive” PEST++ interface (pyEMU PstFrom)
○ Running and plotting Prior Monte Carlo

● More notebooks are being added...

https://github.com/pypest/pyemu_pestpp_workflow

Python-full Example Workflow
PstFrom: setup

pf = PstFrom(original_d=tmp_model_ws, new_d=template_ws,

remove_existing=True,

longnames=True, spatial_reference=sr,

zero_based=False, start_datetime="1-1-2018")

Python-full Example Workflow
PstFrom: setup

pf.add_observations("sfr.csv", insfile="sfr.csv.ins", index_cols="time",

use_cols=["gage_1", "headwater", "tailwater"],

ofile_sep=",")

Python-full Example Workflow
PstFrom: setup

rch_files = ["recharge_1.txt","recharge_2.txt","recharge_3.txt"]

pf.add_parameters(filenames=rch_files, par_type="pilotpoints",par_name_base="rch_pp",

pargp="rch_pp", zone_array=ib, upper_bound=0.8, lower_bound=1.2,

geostruct=rch_gs)

Python-full Example Workflow
PstFrom: setup

pf.add_parameters(filenames=”hk_layer_1.txt”, par_type="grid",

par_name_base="hk1_gr", pargp="hk1_grid", zone_array=ib,

upper_bound=0.5, lower_bound=50.0, geostruct=rch_gs,

par_style=”direct")

Python-full Example Workflow
PstFrom: setup

pf.mod_sys_cmds.append("mf6")

pst = pf.build_pst('freyberg.pst')

pe = pf.draw(num_reals, use_specsim=True)

pe.to_csv("prior.csv")

cov = pf.buid_prior()

cov.to_uncfile("prior.unc")

A higher resolution (synthetic) model
If you happen to be using MODFLOW, flopy is you tool!

...but the same PstFrom script

● 3 layers X 120 rows X 60 columns
● 730 daily stress periods

Imagine how disruptive changing discretization is….

Python-full
Example Workflow

Prior Monte Carlo results

Python-full
Example Workflow

Prior Monte Carlo results

Looking forward
PEST++

● Off loading linear algebra to workers
○ Needed for very high dimensional localization solve

● Geostats++
○ Tighter integration of estimation and simulation
○ Unstructured grids
○ Conditional simulation
○ Also for pyEMU

Gallagher and Doherty. 2020. Water supply
security for the township of Biggenden. A GMDSI
worked example report

Looking forward
PESTPP-DA

● The ensemble Kalman suite
○ Iterative ensemble Kalman Filter
○ Multiple Data Assimilation approach

● sequential/recursive estimation
● Forward-in-time processes

○ Subsidence
○ Mass transport
○ Saltwater intrusion

● Ayman Alzraiee (USGS)

Looking forward
PESTPP-MOU

● Constrained multi-objective optimization
○ evolutionary/genetic global algorithms

● Chance constraints
○ FOSM and stacks

● Zak Stanko (USGS)

Singh and Minsker 2008. Uncertainty‐based multiobjective optimization of groundwater remediation design

Looking forward
PESTPP-SQP

● Industrial-strength constrained non-linear optimization
○ Ensemble approximation
○ Constrained quasi-newton solution

● Chance constraints
○ FOSM and stacks

● Matt Knowling (Uni Adelaide)

Looking forward
pyEMU and PstFrom

● Higher-level interface(s)
○ Spreadsheets
○ yml/json
○ GUI

● Better support for unstructured grids
● Improved geostats

○ Improved speed
○ Conditional sim

Where are these tools and examples?
● https://github.com/usgs/pestpp
● https://github.com/pypest/pyemu
● https://github.com/pypest/pyemu_pestpp_workflow
● PEST++ Version 5 USGS report

And for python with MODFLOW

● https://github.com/modflowpy/flopy
● https://github.com/aleaf/modflow-setup

Thanks for listening!

https://github.com/usgs/pestpp
https://github.com/pypest/pyemu
https://github.com/pypest/pyemu_pestpp_workflow
https://github.com/modflowpy/flopy
https://github.com/aleaf/modflow-setup

	A whirlwind tour of
PEST++ (v5) and pyEMU (v1)
	Thanks to GMDSI!

https://gmdsi.org/
	Thanks to contributors!
	Outline
	Why PEST and PEST++?
	PEST++
	PEST++
	PEST++
	PEST++
	Slide Number 10
	Slide Number 11
	PEST++
	PEST++
	PEST++
	PEST++
	Version 2 control file
	pyEMU
	pyEMU
	pyEMU + PEST(++)
	pyEMU - with Jupyter Notebooks
	pyEMU - with Jupyter Notebooks
	pyEMU
	pyEMU
	pyEMU
	pyEMU
	pyEMU
	Slide Number 27
	pyEMU
	PEST++ workflow demonstration
	The (synthetic) model
	Python-less Example Workflow
	Python-less Example

	Python-less Example

	Very Important Point
	The “truth”
	PESTPP-SEN: overview
	PESTPP-SEN: setup
	PESTPP-SEN: results
	PESTPP-SEN: results
	PESTPP-SEN: results
	PESTPP-SEN: results
	PESTPP-GLM: overview
	PESTPP-GLM: setup
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	PESTPP-IES: overview
	PSETPP-IES: setup
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Now What?
	Now What?
	Mgmt opt under uncertainty
	UQ/DA: terminology vs Mgmt Optimization
	Chance constraints: Theory
	Chance constraints: Theory
	Chance constraints: Theory
	PESTPP-OPT: overview
	PESTPP-OPT: setup
	PESTPP-OPT: setup
	PESTPP-OPT: setup
	PESTPP-OPT: results
	PESTPP-OPT: results
	Python-full Example Workflow
	Python-full Example Workflow
	Python-full Example Workflow
	Python-full Example Workflow
	Python-full Example Workflow
	Python-full Example Workflow
	A higher resolution (synthetic) model
	Python-full
Example Workflow
	Python-full
Example Workflow
	Looking forward
	Looking forward
	Looking forward
	Looking forward
	Looking forward
	Where are these tools and examples?

